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ABSTRACT
A fast, low-complexity, algorithm for solving the `1-regularized
least-squares problem is devised and analyzed. Our algorithm,
which we call the Inertial Iterative Soft-Thresholding Algorithm
(I-ISTA), incorporates inertia into a forward-backward proximal
splitting framework. We show that the iterates of I-ISTA con-
verge linearly to a minimum with a better rate of convergence than
the well-known Iterative Shrinkage/Soft-Thresholding Algorithm
(ISTA) for solving `1-regularized least-squares. The improvement
in convergence rate over ISTA is significant on ill-conditioned
problems and is gained with minor additional computations. We
conduct numerical experiments which show that I-ISTA converges
more quickly than ISTA and two other computationally comparable
algorithms on compressed sensing and deconvolution problems.

Index Terms— Inertial forward-backward proximal splitting,
heavy ball method, gradient descent with momentum, compressed
sensing, deconvolution.

1. INTRODUCTION

We are interested in problems of the following form:

min
x
{f(x) + r(x)} , (1)

where x ∈ Rn, f is proper, convex and differentiable and r is proper,
convex, lower semi-continuous, but not necessarily differentiable.
The `1-regularized least-squares problem, which we call Problem
`1-LS, corresponds to (1) when f(x) is a quadratic and r(x) is the `1
norm of x. It is also referred to as basis pursuit de-noising (BPDN).
Given A ∈ Rm×n, y ∈ Rm and a regularization parameter γ ≥ 0,
Problem `1-LS is

min
x

{
1

2
‖y −Ax‖2 + γ‖x‖1

}
, (2)

where ‖ · ‖ is the Euclidean norm and ‖ · ‖1 is the `1-norm. Since
the objective is coercive and bounded below by 0, problem `1-LS
always has a solution.

Problem `1-LS has important applications in machine learning,
signal processing, statistics and compressed sensing [1, 2, 3, 4, 5]. In
compressed sensing, a sparse vector x0 is measured with a sensing
matrix A, to form y = Ax0 + e, where e is measurement noise. We
would like to recover x0 from y, however the number of measure-
ments m is less than n. Nonetheless, under certain conditions on
the sparsity level, measurement matrix and γ, a solution to Problem
`1-LS accurately approximates x0 [6, 7, 8].
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Many approaches to solving Problem `1-LS have been proposed
in recent years, such as, interior point methods [9], path-following
homotopy methods [8] and active-set identification methods [10]. In
this paper we focus on first-order iterative shrinkage/soft-thresholding
approaches because of their simplicity, computational efficiency and
scalability [11]. In particular we focus on forward-backward split-
ting (FBS) [12, 13, 14]. FBS describes a family of first-order
iterative methods for solving problems in the form of (1).

Inertial methods involve a history of previous iterates in the up-
date of the next iterate [15, 16]. These methods were inspired by
the discretization of differential equations and can accelerate con-
vergence [17, 18]. In this paper, we propose adding an inertial term
to ISTA, a well-known FBS algorithm for solving Problem `1-LS
[19].

1.1. Contributions in this Paper

We propose a new method for solving Problem `1-LS. We prove that
the iterates of the algorithm converge linearly to a minimum and de-
termine the parameters which optimize the convergence rate. We
show that the algorithm has a better convergence rate than ISTA. Fi-
nally, we present numerical simulations on four important instances
of Problem `1-LS showing that our algorithm is faster than ISTA and
two other well-known first-order iterative shrinkage and threshold-
ing algorithms.

1.2. Notation

A sequence ak is said to converge linearly to its limit a∗, with rate
of convergence q, if

lim sup
k→∞

‖ak+1 − a∗‖
‖ak − a∗‖ = q ∈ (0, 1).

For any v ∈ Rn , A ∈ Rm×n and F ⊆ {1, 2, . . . , n}, let the
following definitions hold. Let vF be the |F |-dimensional vector
with elements equal to v on the subset F . Let supp(v) , {i : vi 6=
0}. Let λmax be the largest eigenvalue of ATA. Let AF be the m×
|F | matrix formed by selecting the columns of A corresponding to
F . Let λ1, λ2, . . . , λ|F | be the eigenvalues of ATFAF in increasing
order of magnitude and let λFmin , λ1 and λFmax , λ|F |.

We use Sν to denote the shrinkage/soft-thresholding operator,
defined as:

Sν(a) , max {|a| − ν, 0} sgn(a) (3)

where sgn(a) = 1 if a ≥ 0 and −1 otherwise. Sν(v) refers to the
result of applying the soft-thresholding operator element-wise to v.
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2. PREVIOUS ALGORITHMS

2.1. FBS

FBS is a well-known approach to solving (1). It relies on proximity
operators. The proximity operator of a convex function r is

proxr(y) , argmin
z
r(z) +

1

2
‖z − y‖2. (4)

Since r is convex and lower semi-continuous, proxr(y) is a well-
defined function. For many important choices of r, proxr is inex-
pensive to compute [13]. The iterations of FBS are

xk+1 = proxτkr
(
xk − τk∇f(xk)

)
, (5)

starting at an arbitrary initial point x0 and with explicit prescriptions
on the step-size τk.

2.2. ISTA

For Problem `1-LS, a well-known algorithm is ISTA, see [11, 19,
20, 21]. ISTA belongs to the family of FBS methods [22]. The
proximity operator of the `1-norm is the soft-thresholding operator
Sν given in (3). Rate of convergence results for ISTA are much
stronger than for the general FBS family. Let x∗IST , limk→∞ x

k

and F , supp(x∗IST). Assume λFmin > 0, which is a necessary
condition in compressed sensing when F corresponds to the support
set of x0 [6]. It was shown in [22] that the iterates of ISTA converge
linearly to x∗IST with rate q0 where

q0 ,
λmax − λFmin

λmax + λFmin

, (6)

which is achieved by choosing τk = 2/(λmax + λFmin) for all k.
If λmax � λFmin, the rate is very close to 1, leading to very slow
convergence of ISTA.

2.3. The Heavy Ball Method

The Heavy Ball with Friction method (HBF) is an inertial method for
minimizing unconstrained strongly-convex quadratic functions [17].
It was inspired by discretizing the differential equation describing
the motion of a particle under the effects of friction and a conserva-
tive force [15, 16]. The iterates of HBF for minimizing f are

xk+1 = xk − τ∇f(xk) + β(xk − xk−1). (7)

where τ and β are scalars. HBF is equivalent to the standard gradi-
ent descent algorithm (GD) with an additional inertia term: β(xk −
xk−1). The inertia term is also called a momentum term and has
been used in other settings [23, 24, 25]. The parameters τ and β are
determined by the condition number of the Hessian and β is always
in [0, 1). The effect of the inertia is to smooth out the rapid changes
in the gradient descent direction which can occur on ill-conditioned
problems, leading to slow convergence of GD. The inertia causes
HBF to converge more quickly than GD [17, 23].

2.4. Inertial Forward-Backward Splitting

Moudafi and Oliny extended HBF to a more general setting which
includes Problem (1) [26]. In this paper we will refer to their pro-
posal as Inertial Forward-Backward Splitting (I-FBS). The iterates
of I-FBS are

xk+1 = proxτkr
(
xk − τk∇f(xk) + βk(x

k − xk−1)
)
. (8)

In fact, I-FBS can be applied to the more general problem of find-
ing a zero of the sum of two maximal-monotone operators, of which
Problem (1) is a special case. Note that I-FBS is not the same as the
more famous Fast Iterative Soft-Thresholding Algorithm (FISTA)
[27], which computes the gradient at the extrapolated point. FISTA
has different convergence guarantees.

2.5. Convergence Properties of I-FBS

To finish the section on previous work, we present the following
result on the convergence of I-FBS methods.

Theorem 1 ([18, 26]). Suppose that, for all k, 0 < τk ≤ τ <
2/λmax, the βk’s are non-decreasing and 0 < βk ≤ β < 1/3. Then
the output xk of I-FBS converges to a solution to Problem `1-LS.

While Theorem 1 guarantees the convergence of I-FBS methods
under the restrictions on βk and τk, the type of convergence is not
known (i.e. linear, quadratic etc.). Furthermore, effective choices
within the constraints of the sequences τk and βk are also not known.
In the following sections we address these short comings for Prob-
lem `1-LS by introducing I-ISTA.

3. I-ISTA

Our proposed algorithm, I-ISTA, is given in Algorithm 1. It is sim-
ilar to ISTA but with the addition of the all-important inertia term
which accelerates the rate of convergence. It is a member of the I-
FBS family of methods since it can be written in the form of (8). Our
analysis allows us to provide much stronger guarantees than what is
known for the more general I-FBS family along with a more precise
prescription for τ and β. We consider fixed τ and β across itera-
tions. It is possible to extend our analysis to the more general case
with some loss of readability and clarity.

Algorithm 1 I-ISTA

Require: The tuple (A, y, γ) which is an instance of Problem `1-
LS, a starting point x0, constants β and τ and a stopping crite-
rion.

1: Set k = 0, x−1 = x0.
2: while stopping criterion is not satisfied do
3: xk+1 = Sτγ

[
xk − τAT (Axk − y) + β(xk − xk−1)

]
.

4: k = k + 1.
5: end while
6: return xk

4. ASYMPTOTIC EQUIVALENCE OF I-ISTA AND HBF

Our first result states that after a finite number of iterations, I-ISTA
becomes equivalent to HBF applied to an explicit quadratic function.
This fact will allow us to determine the rate of convergence of I-ISTA
by considering the behavior of HBF applied to this quadratic. Due
to space limitations we cannot include the proof which can be found
on pages 22-24 of [28].

Theorem 2 ([28]). Assume the conditions of Theorem 1 hold for a
particular instance of Problem `1-LS and choices of τ and β, then
the sequence xk converges to some x∗, which is a solution to Prob-
lem `1-LS. Let E , supp(x∗). Under the strict-complementarity
condition (Eq. (4.22) of [22]) there exists a constant K > 0 such
that for k > K, the support set of xk is E, and, the sequence xkE
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for k > K is equal to that generated by HBF applied to minimize a
strongly convex quadratic function φ(u) for u ∈ R|E|, starting from
some initial point. Finally, the Hessian of φ is ATEAE .

The proof of Theorem 2 proceeds in the spirit of [22]. We
show that after finitely many iterations, I-ISTA becomes equivalent
to heavy-ball method applied to minimize a quadratic function with
Hessian given by ATEAE on the set E. Outside of E, the iterates
are 0. The strict complementarity condition of [22] is that, for all
i /∈ supp(x∗), |aTi (Ax∗ − y)| < γ. This condition can be relaxed
[28].

5. RATE OF CONVERGENCE OF I-ISTA

We will now choose τ and β to improve upon the rate of conver-
gence of ISTA, which is q0 given in (6). As in Theorem 2, let E ,
supp(limk→∞ x

k). Let κE , λEmax/λ
E
min and let κ′ , λmax/λ

E
min.

Theorem 3. Let C be some constant such that 0 < C < 1/3. Let

β∗ , max

{(√
κE − 1
√
κE + 1

)2

,

(
1−

√
2

κ′ + 1

)2}
, (9)

and

τ∗ ,
2

λmax + λEmin

. (10)

If β = min {β∗, C}, τ = τ∗, the strict-complementarity condition
(Eq. (4.22) of [22]) holds, and λEmin > 0, then the iterates of I-ISTA
with parameters τ and β converge linearly to a solution of Problem
`1-LS. Since λEmin > 0, ISTA converges to the same minimizer. The
rate of convergence of I-ISTA is q(τ, β) with q(τ, β) < q0, where
q0 is the rate of convergence of ISTA. Furthermore if β∗ < C,
q(τ, β) =

√
β∗.

Proof. According to Theorem 2, there exists a K such that for k >
K, the iterations of I-ISTA satisfy[

xk+1
E − x∗E
xkE − x∗E

]
=M

[
xkE − x∗E
xk−1
E − x∗E

]
(11)

where

M ,

[
(1 + β)I|E|×|E| − τATEAE −βI|E|×|E|

I|E|×|E| 0|E|×|E|

]
(12)

and xki = 0 for all i /∈ E. Which implies that for k > K,

‖xk − x∗‖ = ‖xkE − x∗E‖ ≤ C(q(τ, β) + εk)
k, (13)

where q(τ, β) is greater than or equal to the maximum magnitude of
all eigenvalues of M and limk→∞ εk = 0 [17].

Let the eigenvalues of M be ρj , for j = 1, 2, . . . , 2|E|. These
are equal to the eigenvalues of the 2× 2 matrices:[

1 + β − τλi −β
1 0

]
, (14)

for i = 1, 2, . . . , |E|. Recall that λ1, λ2, . . . , λ|E| are the eigenval-
ues of ATEAE , in order of increasing magnitude. Therefore the ρj
are the 2|E| roots of the equations

ρ2 − ρ(1 + β − τλi) + β = 0, i = 1, 2, . . . , |E|. (15)

Let ρ+i (τ, β) , ρ2i−1 and ρ−i (τ, β) , ρ2i for i = 1, 2, . . . , |E|.
Then

ρ±i (τ, β) =
(1 + β − τλi)±

√
(1 + β − τλi)2 − 4β

2
. (16)

where we have collected the 2|E| eigenvalues into pairs of solutions
for each of the |E| quadratic equations. Now if

(1 + β − τλi)2 − 4β ≤ 0 (17)

then |ρ+i (τ, β)| = |ρ
−
i (τ, β)| =

√
β.

(17) holds for every i if and only if (iff)

(1−
√
β)2

λi
≤ τ ≤ (1 +

√
β)2

λi
, i = 1, 2, . . . , |E|. (18)

Now τ can be chosen to satisfy condition (18) iff

(1−
√
β)2

λEmin

≤ (1 +
√
β)2

λEmax

. (19)

(19) holds iff

β ≥
(√

κE − 1
√
κE + 1

)2

. (20)

Furthermore, we would like to be able to choose τ = 2/(λmax+
λEmin). So we enforce:

(1−
√
β)2

λEmin

≤ 2

λmax + λEmin

≤ (1 +
√
β)2

λEmax

, (21)

which is true if

β ≥

(
1−

√
2

κ′ + 1

)2

. (22)

Now β = β∗ satisfies both conditions (20) and (22). Also τ∗ <
2/λmax. If β∗ < C < 1/3, then the choice β = β∗ and τ =
τ∗ satisfies the conditions of Theorem 1. Therefore the iterates of
I-ISTA with this choice converge linearly to a minimum with rate
q(τ∗, β∗) =

√
β∗. It can be verified that

√
β∗ < q0.

Now consider the case where β∗ > C. We must examine the
eigenvalues, ρ±i (τ, β) in more detail. For all i,

1− τλi > 0 =⇒ ρ+i (τ, 0) = 1− τλi and ρ−i (τ, 0) = 0,

and
1− τλi < 0 =⇒ ρ+i (τ, 0) = 0 and ρ−i (τ, 0) = 1− τλi.

Now, by considering the derivative with respect to β, one can see
that ρ+i (τ, β) is monotone decreasing in β for β < β∗, for all i
and for all τ > 0. Similarly, ρ−i (τ, β) is monotone increasing in β.
Therefore max

{
|ρ+i (τ, β)|, |ρ

−
i (τ, β)|

}
is monotone decreasing in

β for β ≤ β∗, and

q(τ, β) = max
i

{
max

{
|ρ+i (τ, β)|, |ρ

−
i (τ, β)|

}}
is monotone decreasing in β for β < β∗. Finally, the choice τ =
τ∗ and β = C satisfies the conditions of Theorem 1. Thus the
iterates of I-ISTA converge linearly with rate of convergence equal
to q(τ∗, C) < q(τ∗, 0) = q0. �

Remarks on Theorem 3
The function φ defined in Theorem 2 has Lipschitz continuous gra-
dient. Consequently, Theorem 3 also implies linear convergence of
F (xk) to the optimal value of Problem `1-LS, with the same rate.

Empirical studies suggest that the restriction of β to be less than
1/3 in Theorem 1 is not a necessary condition of convergence. Ex-
tending the theoretical guarantee to all β ∈ [0, 1) is an important
direction of future research.

3568



6. PRACTICAL CONSIDERATIONS FOR I-ISTA

The optimal choice of τ and β depends on κE and κ′, which depend
on the support set of the limit. These quantities could be estimated
based on known properties of A and the estimated sparsity level.
The estimates could be iteratively updated using the support set of
the current xk. Alternatively, we recommend the following simple
rule of thumb based on the optimal choices determined in Theorem
3. Set τ = 2/λmax and

• 0.9 < β < 1, ifAE is expected to be poorly conditioned (i.e.
κE � 100),

• 0.5 < β ≤ 0.9, if AE is expected to be moderately condi-
tioned (i.e. κE ≈ 100) and

• 0 ≤ β ≤ 0.5, if AE is expected to be well-conditioned (i.e.
κE ≈ 1).

The more information we have about κ′ and κE , the closer we can
get to choosing the optimal β. Strictly we should choose τ= 2

λmax
−ε

with an arbitrarily small ε, however in practice ε can be set to 0.
Empirical studies suggest that too much inertia can slow con-

vergence in the early iterations of I-ISTA. We believe this is be-
cause the support of xk changes dramatically in the early iterations
and too much inertia can interfere with this process. However a
small amount of inertia does appear to help. Consequently, we sug-
gest using an increasing sequence of inertia parameters. We used
βk = max{0, β − 1/k}, with β chosen using the rule of thumb
above.

7. SIMULATIONS
We present the results of four simulations that compare the perfor-
mance of ISTA, I-ISTA, FISTA [27] and TwIST [29]. We consider
these two iterative methods alongside ISTA and I-ISTA because they
have comparable computational complexity per iteration. They are
also inertial methods and involve the previous two iterates in the up-
date of the next iterate. We now outline the four experiments.
Experiment 1 (compressed sensing): the matrix A is 500 × 1000
and had entries drawn i.i.d. fromN (0, 1/500). γ = 5× 10−3.
Experiment 2 (compressed sensing): the matrix A is 500 × 1000
and had values drawn i.i.d. from a scaled version of the Rademacher
distribution, taking value ±1/

√
500, with equal probability. γ =

1× 10−3.
Experiment 3 (deconvolution): F is a 1049× 1049 Toeplitz matrix
with columns given by incrementally shifted copies of a length-50
constant rectangular window, H is the inverse Haar wavelet matrix
truncated to size 1049× 1049 and A = FH . γ = 2.
Experiment 4 (deconvolution): F is a 1069× 1069 Toeplitz matrix
with columns given by incrementally shifted copies of a length-70
triangular window. H is the inverse Haar wavelet matrix truncated
to size 1069× 1069 and A = FH . γ = 2.

In all Experiments, y = Ax0 + e, where e had i.i.d. N (0, σ2)
entries. In Experiment 1, σ2 = 0.052, and in Experiments 2, 3 and
4, σ2 = 0.012. In Experiments 1, 3 and 4, x0 is 250-sparse and
in Experiment 2, x0 is 100-sparse. The non-zero entries of x0 are
drawn i.i.d. N (0, 1) and the support is drawn uniformly at random.

Let F (x) , 1
2
‖y − Ax‖2 + γ‖x‖1. We used the interior point

method described in [9] to compute the optimal value F ∗ of Prob-
lem `1-LS , to a relative duality gap of 10−8. Let F̂ be the value
computed by the interior point method. Note that a relative duality
gap of 10−8 does not imply F̂ − F ∗ = 10−8. For a sequence of
estimates xk, let ek , |F (xk) − F̂ |. Note that ek will saturate to
F̂ −F ∗. The results of Experiments 1 through 4 can be seen in Figs.
1 and 2. We plotted the log of ek against iteration number to better
illustrate the various convergence rates achieved by the algorithms.
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Fig. 1: log10 e
k versus iteration number k, compressed sensing ex-

periments. Left: Experiment 1, right: Experiment 2.
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Fig. 2: log10 e
k versus iteration number k, deconvolution experi-

ments. Left: Experiment 3, Right: Experiment 4.

For ISTA, we used τ = 2/λmax. For FISTA we used the non-
monotone algorithm with parameters as specified in [27]. For TwIST
we used the monotone version with backtracking and parameters
as specified in [29]. For I-ISTA, in all experiments we used τ =
2/λmax and βk = max{0, β − 1/k}. For Experiment 1, we used
β = 0.99, for Experiment 2, β = 0.9. and for Experiments 3 and 4,
we used β = 0.95. All algorithms were initialized at x0 = 0.
Discussion of Simulation Results: The results of all the experi-
ments show that ISTA is much slower than the other three acceler-
ated methods on these sorts of problems. This is not surprising as
the solution to Problem `1-LS was not very sparse in any of the ex-
periments and ISTA is only expected to be competitive in the highly
sparse regime. FISTA is slower than I-ISTA. We believe this is be-
cause the parameters of FISTA are chosen without taking into ac-
count the expected conditioning of AE . The speeds of I-ISTA and
TwIST are similar on Experiment 2. However, in Experiments 1, 3
and 4, I-ISTA was faster. Choosing β intelligently based on knowl-
edge of the operator A allows I-ISTA to outperform the other meth-
ods. Furthermore the performance of TwIST on instances of Prob-
lem `1-LS whereA is singular - as is the case in all four experiments
- is hard to predict as there is no performance guarantee in this case
[29].
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