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ABSTRACT

Primal-dual proximal optimization methods have recently gained
much interest for dealing with very large-scale data sets encoutered
in many application fields such as machine learning, computer vi-
sion and inverse problems [1–3]. In this work, we propose a novel
random block-coordinate version of such algorithms allowing us
to solve a wide array of convex variational problems. One of the
main advantages of the proposed algorithm is its ability to solve
composite problems involving large-size matrices without requiring
any inversion. In addition, the almost sure convergence to an opti-
mal solution to the problem is guaranteed. We illustrate the good
performance of our method on a mesh denoising application.

Index Terms— convex optimization, nonsmooth optimization,
primal-dual algorithm, stochastic algorithm, block-coordinate algo-
rithm, proximity operator, mesh processing, denoising, inverse prob-
lems.

1. INTRODUCTION

A quite general formulation of optimization problems arising in
many application areas such as machine learning, computer vision
or inverse problems [1–3] is as follows:

minimize
x1∈H1,...,xp∈Hp

p∑
j=1

(
fj(xj) + hj(xj)

)
+

q∑
k=1

(gk � lk)

( p∑
j=1

Lk,jxj

)
(1)

where

• for every j ∈ {1, . . . , p}, Hj is a separable real Hilbert space,
fj and hj are proper lower-semicontinuous convex functions
from Hj to ]−∞,+∞], hj being assumed to be Lipschitz
differentiable,1

• for every k ∈ {1, . . . , q}, Gk is a separable real Hilbert space,
gk and lk are proper lower-semicontinuous convex functions
from Gk to ]−∞,+∞], lk being assumed to be strongly con-
vex,

• Lk,j is a linear bounded operator from Hj to Gk.

In (1), � denotes the inf-convolution operation defined by gk � lk :
yk 7→ infzk∈Gk

(
gk(zk) + lk(yk − zk)

)
. In particular, if lk is the

indicator function of {0} then gk � lk reduces to gk. This special
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case in our framework probably corresponds to the most useful sce-
narios encountered in practice (e.g. total variation prior). Note that
(fj)16j6p and (gk)16k6q can be chosen equal to the indicator func-
tions of some closed convex sets so as to incorporate constraints on
the solution to the optimization problem. See [4] for further details.

In the case when a single block of variables (p = 1) is consid-
ered, Problem (1) can be efficiently solved using primal-dual split-
ting methods (see [5] and references therein) by performing, at each
iteration, parallel computations of proximity operators and gradient
steps. The main advantage of such algorithms relies on their abil-
ity to solve the primal problem (1) and its dual formulation with no
need to invert linear operators. This ability turns out to be of primary
importance in terms of computational complexity in the context of
some large-scale problems (see e.g. [1,6–11]). Block-coordinate ver-
sions of various proximal algorithms have been recently proposed,
such as the forward-backward algorithm [12–19], the Alternating
Direction Method of Mutipliers [20, 21], and the Douglas-Rachford
algorithm [12], where some of the block indices in {1, . . . , p} are ac-
tivated at each iteration either in a random or deterministic manner.
Although these methods have demonstrated a good performance,
they are often limited either by the fact that they do not allow to fully
split Problem (1) (in the sense that each function can be handled in-
dividually), or they require the inversion of some linear operators.

In this work we propose to combine the primal-dual strategy
from [22–25] with the stochastic optimization tools recently devel-
oped in [12], giving rise to a new block-coordinate proximal primal-
dual algorithm to solve Problem (1). Our algorithm makes it possible
to activate randomly a subset of the 2(p + q) functions involved in
the criterion. Such a strategy may be useful when p and q are large.
In the line of [12, 15], the almost sure (a.s.) convergence to a solu-
tion to Problem (1) is proved even when some stochastic errors arise
in the computation of the operations associated with the involved
functions.

The remainder of this paper is organized as follows. First, we
introduce our notation and better formulate the problem in Sec-
tion 2. Then we describe in Section 3 the proposed random block-
coordinate primal-dual proximal splitting algorithm and investigate
its convergence properties. An application to 3D mesh denoising
is provided in Section 4 to illustrate the good performance of our
method. Finally, some conclusions are drawn in Section 5.

1A differentiable function f : H → R is said to be µ-Lipschitz differen-
tiable if its gradient ∇f is such that (∀(x, x′) ∈ H2) ‖∇f(x) − ∇f(x′)‖ 6
µ‖x− x′‖.
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2. PROBLEM FORMULATION

2.1. Optimization background

Let H be a real Hilbert space and let Γ0(H) denote the set of lower-
semicontinuous convex functions from H to ]−∞,+∞] which are
proper (i.e. with a nonempty domain). The proximity operator of a
function f ∈ Γ0(H) relative to the metric induced by some strongly
positive bounded linear operator U : H→ H is defined as

proxU
f : H→ H : x→ argmin

y∈H
f(y) +

1

2
〈x− y | U(x− y)〉,

where 〈· | ·〉 is the scalar product endowing H.
The Fenchel-Legendre conjugate function f∗ ∈ Γ0(H) of f is

defined by

(∀x ∈ H) f∗(x) = sup
y∈H

(〈y | x〉 − f(y)) . (2)

The Moreau decomposition theorem [26] ensures that proxU
f∗(·) =

I− U−1 proxU−1

f (U·).

2.2. Minimization problem

In this paper, we focus on problems of the form (1) satisfying the
following technical assumption:

Assumption 2.1. Problem (1) has at least one solution and one of
the following two statements holds:
• (∀j ∈ {1, . . . , p}) fj is real-valued and, for every k ∈
{1, . . . , q}, (xj)16j6p 7→

∑p
j=1 Lk,jxj is surjective.

• (∀k ∈ {1, . . . , q}) either gk or lk is real-valued.
Moreover, the operators (Lk,j)16j6p, 16k6q are non-trivial in the
sense that, for every k ∈ {1, . . . , q} and for every j ∈ {1, . . . , p},

Lk =
{
j′ ∈ {1, . . . , p}

∣∣ Lk,j′ 6= 0
}
6= ∅, (3)

L∗j =
{
k′ ∈ {1, . . . , q}

∣∣ Lk′,j 6= 0
}
6= ∅. (4)

The dual problem of Problem (1) is then given by

minimize
v1∈G1,...,vq∈Gq

p∑
j=1

(f∗j � h∗j )

(
−

q∑
k=1

L∗k,jvk

)

+

q∑
k=1

(
g∗k(vk) + l∗k(vk)

)
. (5)

We denote by F (resp. F∗) the set of solutions to Problem (1)
(resp. (5)). Our objective now is to generate a couple of random
variables (x̂, v̂) taking its values in F× F∗.

3. BLOCK-COORDINATE PRIMAL-DUAL ALGORITHM

3.1. Proposed algorithm

We propose to solve Problem (1) by adopting a primal-dual proxi-
mal splitting approach. Our algorithm is characterized by two main
features. First, in order to take advantage of the block structure, a
random block alternating strategy over indices j ∈ {1, . . . , p} and
k ∈ {1, . . . , q} is implemented. Second, in accordance with re-
cent works which have demonstrated the advantage in terms of con-
vergence speed of adapting the underlying space metrics [10, 27],
preconditioning linear operators (Wj)16j6p and (Uk)16k6q are in-
troduced. We assume that these operators satisfy the following as-
sumption:

Assumption 3.1.
(i) (∀j ∈ {1, . . . , p}) Wj : Hj → Hj is a strongly positive self-

adjoint bounded linear operator such that hj ◦W1/2
j has a

µ−1
j -Lipschitzian gradient with µj ∈ ]0,+∞[.

(ii) (∀k ∈ {1, . . . , q}) Uk : Gk → Gk is a strongly positive self-
adjoint bounded linear operator such that l∗k ◦ U

1/2
k has a

ν−1
k -Lipschitzian gradient with νk ∈ ]0,+∞[.

In the following, H = H1 ⊕ · · · ⊕ Hp denotes the Hilbert di-
rect sum of (Hj)16j6p. A generic element of H is denoted by x =
(xj)16j6p with xj ∈ Hj . Similarly, we define G = G1 ⊕ · · · ⊕ Gq

and v = (vk)16k6q where vk ∈ Gk denotes a generic element of G.
Moreover, D = {0, 1}p r {0} is the set of nonzero binary words
of length p. We will keep on using such kind of notation throughout
the paper. The proposed Randomized Block Primal-Dual Proximal
algorithm is given below.

Algorithm 1 Randomized Block Primal-Dual Algorithm.
Initialization: Let (λn)n∈N be a sequence in ]0, 1] such that
infn∈N λn > 0.
Let x0, (an)n∈N, and (cn)n∈N be H-valued random variables,
and let v0, (bn)n∈N, and (dn)n∈N be G-valued random variables.
Iterations:

for n = 0, 1, . . .

Select randomly a vector of binary variables εn = (εj,n)16j6p.
for k = 1, . . . , q
ηk,n = max

16j6p

{
εj,n

∣∣ k ∈ L∗j
}

uk,n = ηk,n
(

prox
U−1
k

g∗
k

(
vk,n − Uk(∇l∗k(vk,n) + dk,n))

+Uk

∑
j∈Lk

Lk,jxj,n
)

+ bk,n
)

vk,n+1 = vk,n + λnηk,n(uk,n − vk,n)
for j = 1, . . . , p
yj,n = εj,n

(
prox

W−1
j

fj

(
xj,n −Wj(∇hj(xj,n) + cj,n)

−Wj

∑
k∈L∗j

L∗k,j(2uk,n − vk,n)
)

+ aj,n
)

xj,n+1 = xj,n + λnεj,n(yj,n − xj,n).

The random Boolean variables (εn)n∈N must satisfy the follow-
ing assumption:

Assumption 3.2. (εn)n∈N are identically distributed D-valued ran-
dom variables and, for every n ∈ N, εn and Xn = (xn′ ,vn′)06n′6n

are independent. In addition, (∀j ∈ {1, . . . , p}) P[εj,0 = 1] > 0.

At each iteration n of Algorithm 1, (εj,n)16j6p signals the pri-
mal variables (xj,n)16j6p that are activated. From a computational
viewpoint, this means that if, for a given j ∈ {1, . . . , p}, εj,n = 0,
the corresponding variable xj,n does not need to be updated. More-
over, for every k ∈ {1, . . . , q}, ηk,n indicates the dual variables
uk,n and vk,n that are activated. These dual variables need to be
modified only when there exists j ∈ {1, . . . , p} such that εj,n and
Lk,j are nonzero.

For every j ∈ {1, . . . , p}, and k ∈ {1, . . . , q}, the random
variables (aj,n)n∈N and (bk,n)n∈N model stochastic errors possibly

arising when applying prox
W−1

j

fj
and prox

U−1
k

g∗
k

, while (cj,n)n∈N and
(dk,n)n∈N model some possible errors when computing the gradi-
ents of hj and l∗k. These random variables are required to fulfill the
following assumption:
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Assumption 3.3. We have almost surely∑
n∈N

√
E(‖an‖2 |Xn) < +∞,

∑
n∈N

√
E(‖bn‖2 |Xn) < +∞,

∑
n∈N

√
E(‖cn‖2 |Xn) < +∞,

∑
n∈N

√
E(‖dn‖2 |Xn) < +∞,

where for every n ∈ N, Xn is defined as in Assumption 3.2.

It can be noticed that, when p = 1, Algorithm 1 allows us to
generalize existing deterministic primal-dual algorithms. In particu-
lar, when P[ε1,0 = 1] = 1, W1 = τ I and, for every k ∈ {1, . . . , q},
Uk = ρkI, with (τ, ρ1, . . . ρq) ∈]0,+∞[q+1, the algorithm from
[23] is recovered, while the algorithm from [22] is obtained if it is
further assumed that, for every k ∈ {1, . . . , q}, lk = ι{0} where
ι{0} denotes the indicator function of {0}.

3.2. Convergence result

The following theorem, deduced from [15], guarantees that the se-
quence (xn)n∈N asymptotically provides a solution to the primal
problem, while the sequence (vn)n∈N asymptotically yields a solu-
tion to the dual one.

Theorem 3.1. Let (xn)n∈N and (vn)n∈N be generated by Algo-
rithm 1. Suppose that Assumptions 2.1-3.3 are satisfied. Moreover,
suppose that

2
(

1− ‖W1/2LU1/2‖
)

min{(µj)16j6p, (νk)16k6q} > 1, (6)

with L : (xj)16j6p 7→
(∑p

j=1 Lk,jxj
)
16k6q

, U : (vk)16k6q 7→
(U1v1, . . . ,Uqvq), and W : (xj)16j6p 7→ (W1x1, . . . ,Wpxp).
Then, (xn)n∈N converges weakly a.s. to an F-valued random vari-
able, and (vn)n∈N converges weakly a.s. to an F∗-valued random
variable.

Let us remark that, in the case when, for every k ∈ {1, . . . , q},
lk = ι{0}, the following condition, which is less restrictive than (6),
is only required:

2 min{(µj)16j6p}
(

1− ‖W1/2LU1/2‖2
)
> 1. (7)

4. APPLICATION TO 3D MESH DENOISING

4.1. Problem statement

Let us consider an original 3D mesh described by its p nodes with
spatial coordinates x = (xXj , x

Y
j , x

Z
j )16j6p ∈ Rp×3 and its adja-

cency matrix A ∈ Rp×p. We are interested in the problem of re-
covering an estimate of the original mesh from an observation of
it, with similar topology (i.e. adjacency matrix A), but whose node
positions, known in an imprecise manner, are given by

z = (zX , zY , zZ) = x + b, (8)

where b = (bj)16j6p ∈ Rp×3 models random uncertainties on the
spatial positions of the mesh nodes. A method to produce an esti-
mate x̂ ∈ Rp×3 of x, is to define it as a solution to Problem (1),
where functions (fj)16j6p, (hj)16j6p, and (gk)16k6q incorporate
some information regarding the observation model, and some a pri-
ori knowledge on the sought node positions [1].

Here, we will focus on the case when the intensity of the el-
ements of b varies spatially. More precisely, two sets of nodes N1

andN2 are defined, with respective cardinalityN1 andN2, such that
N1 + N2 = p. We assume that the elements of (bj)j∈N1 follow a
white Gaussian distribution with zero mean and standard deviation
σ1, while the elements of (bj)j∈N2 follow an i.i.d. Gaussian mixture
distribution, with two mixture components parametrized by mixture
weights (π, 1− π) (π ∈ [0, 1]), zero means and respective standard
deviations σ2 and σ′2.

We define a data fidelity term allowing us to perform a robust
estimation, which corresponds to the sum over j ∈ {1, . . . , p} of
functions:

(∀xj = (xDj )D∈{X,Y,Z} ∈ R3)

hj(xj) =
∑

D∈{X,Y,Z}

Ψj(x
D
j − zDj ), (9)

where, for every j ∈ {1, . . . , p}, Ψj is the Huber function
parametrized by δj ∈]0,+∞], defined as

(∀ξ ∈ R) Ψj(ξ) =

{
1
2
ξ2 if |ξ| 6 δj ,

δj |ξ| − 1
2
δ2j otherwise.

(10)

Note that each function Ψj is 1-Lipschitz differentiable.
Moreover, in order to favor the smoothness of the restored mesh,

we propose to use an isotropic total variation regularization function
[28, 29] defined, for every x ∈ Rp×3, by

p∑
k=1

gk(Lkx) =

p∑
k=1

βk
∑

D∈{X,Y,Z}

‖(xDk − xDi )i∈Vk‖2, (11)

where, for every k ∈ {1, . . . , p}, βk ∈]0,+∞[ and Vk is the set of
neighbors of node k, that is the set of indices i ∈ {1, . . . , p} such
that Aik = 1. Finally, we constrain the estimated nodes to belong
to a box parametrized by its minimal and maximal sought spatial
positions (xDmin, x

D
max)D∈{X,Y,Z} ∈ R3×2. To this end, we define

(∀j ∈ {1, . . . , p}) fj(xj) =
∑

D∈{X,Y,Z}

ι[xDmin,x
D
max]

(xDj ).

Algorithm 1 requires the setting of matrices (Wj)16j6p and
(Uk)16k6p. Here, we simply take Wj ≡ τ I and Uk ≡ ρI, where
(τ, ρ) are positive constants such that Condition (7) is fulfilled.
Since, for every k ∈ {1, . . . , p}, gk corresponds to a separable sum

of `2 norms, prox
U−1
k

g∗
k

has an explicit form [30]. Moreover the prox-

imity operator of function fj relative to the metric induced by W−1
j

corresponds to the projection onto [xXmin, x
X
max] × [xYmin, x

Y
max] ×

[xZmin, x
Z
max].

4.2. Numerical results

In our experiments, we use the standard Bunny 3D mesh, available
at http://graphics.stanford.edu/data/3Dscanrep/, with p = 8171
nodes, displayed in Figure 1(top left). The noisy mesh z, repre-
sented in Figure 1(top right), results from the observation model de-
scribed in Section 4.1. We define N2, with cardinality N2 = 1327,
corresponding to the nodes located in the bunny ears and tail. The
positions of these nodes are affected by outliers following a Gaus-
sian mixture model with (σ2, σ

′
2) = (5 × 10−3, 1.5 × 10−2) and

π = 0.98, while a smaller noise standard deviation σ1 = 10−3

is used for the set N1. Figure 1(bottom left) displays the restored
mesh obtained by applying Algorithm 1 with λn ≡ 1. The regular-
ization parameters are set to βk = 5.5 × 10−4 for every k ∈ N1,

3563



Fig. 1. Original mesh x (top left), noisy mesh z with MSE = 5.45× 10−6 (top right), and reconstructed mesh x̂ using Algorithm 1 with MSE
= 8.89× 10−7 (bottom left) and using Laplacian smoothing with MSE = 1.29× 10−6 (bottom right).

βk = 2.8×10−3 otherwise, δj = +∞ for every j ∈ N1, δj = 10−2

otherwise, so as to minimize the Mean Square Error (MSE) of the re-
stored mesh. For comparison, the result of Laplacian smoothing is
given in Figure 1(bottom right).

Algorithm 1 allows a flexibility for the selection, at each iter-
ation, of the updated nodes. To account for the spatial variability
of the noise, we propose to choose, for every n ∈ N and j ∈
{1, . . . , p}, εj,n as a random variable following a Bernoulli dis-
tribution with probability pj such that pj = 1 for j ∈ N2, and
pj = p ∈]0, 1] otherwise. Note that, for p = 1, Algorithm 1 reduces
to the deterministic primal-dual algorithm from [22]. We evaluate,
for several values of probability p, the performance indicator:

C(p) = n
pN1 +N2

N1 +N2
, (12)

where n ∈ N∗ is the first iteration of Algorithm 1 for which

‖xn − xn−1‖ 6 10−6
√

3p.

For a given p, C(p) can be interpreted as the number of iterations
necessary to reach the convergence, weighted by the mean number
of updated nodes. Figure 2 illustrates the evolution of the indicator
C(p), resulting from an averaging over ten runs of Algorithm 1 (i.e.
ten different realizations of (εn)n∈N). One can observe that C(p) is
minimized for p = 0.33, which shows that the optimal strategy of
Algorithm 1 in terms of convergence profile is obtained when only
a fraction of the nodes in set N1, affected with the smallest noise, is
updated at each iteration.

5. CONCLUSION

In this paper, we have proposed an original approach for combining
primal-dual proximal methods [22, 23] with randomized block-
coordinate strategies [12]. We have shown that this gives rise to

Fig. 2. Indicator C(p) for different values of probability p (average
over ten runs of Algorithm 1).

an efficient, provably convergent, method for solving large-scale
convex optimization problems involving smooth and/or nonsmooth
functions and linear operators, with no need to invert them. The
good performance of the proposed method has been evaluated on
a 3D mesh robust estimation problem. It can be expected that the
proposed block-coordinate primal-dual algorithm will also be useful
in other signal and image processing applications.
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