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ABSTRACT

Significant attention has been given to minimizing a penalized least
squares criterion for estimating sparse solutions to large linear sys-
tems of equations. The penalty induces sparsity and the natural
choice is the so-called l

0

norm. In this paper we develop a Momentu-
mized Iterative Shrinkage Thresholding (MIST) algorithm for mini-
mizing the resulting non-convex criterion and prove its convergence
to a local minimizer. Simulations on large data sets show superior
performance of the proposed method to other methods.

Index Terms— sparsity, non-convex, l
0

regularization, iterative
shrinkage thresholding, momentum

1. INTRODUCTION

In the current age of big data acquisition there has been an ever grow-
ing interest in sparse representations, which consists of representing,
say, a noisy signal as a linear combination of very few components.
This has huge benefits in analysis, processing and storage of high
dimensional signals. As a result, sparse linear regression has been
widely studied with many applications in signal and image process-
ing, statistical inference as well as machine learning. The linear re-
gression model is given by:

y = Ax+ ✏,

where yd⇥1

is a vector of noisy data observations, xm⇥1

is the
sparse representation (vector) of interest, Ad⇥m is the regression
matrix and ✏d⇥1

is the observation noise. The estimation aim is to
choose the simplest model, i.e., the sparsest x, that adequately ex-
plains the data y. To estimate x, major attention has been given
to minimizing a sparsity Penalized Least Squares (PLS) criterion
[1–10]. The least squares term promotes goodness-of-fit of the es-
timator while the penalty shrinks its coefficients to zero. Here we
consider the non-convex l

0

penalty since it is the natural sparsity
promoting penalty and induces maximum sparsity. The resulting
non-convex l

0

PLS criterion is:

F (x) =

1

2

ky �Axk2
2

+ �kxk
0

, (1)

where � > 0 is the tuning parameter and kxk
0

represents the number
of non-zeros in x (l

0

penalty).
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1.1. Previous Work

Existing algorithms for directly minimizing (1) fall into the cat-
egory of Iterative Shrinkage Thresholding (IST), and rely on the
Majorization-Minimization (MM) type procedures, see [1, 10].
These procedures exploit separability properties of the l

0

PLS crite-
rion, and thus, rely on the minimizers of one dimensional versions of
the PLS function: the so-called hard-thresholding operators. Since
the convex l

1

PLS criterion has similar separability properties, some
MM procedures developed for its minimization could with modi-
fications be applied to minimize (1). Applicable MM procedures
include first order methods and their accelerated versions [8,11–14].
However, when these are applied to the l

0

penalized problem (1)
there is no guarantee of convergence, and for [8] there is addition-
ally no guarantee of algorithm stability.

Analysis of convergence of MM algorithms for minimizing the
l
0

PLS criterion (1) is rendered difficult due to lack of convexity.
As far as we are aware, algorithm convergence for this problem has
only been shown for the Iterative Hard Thresholding (IHT) method
[1, 10]. Specifically, a bounded sequence generated by IHT was
shown to converge to the set of local minimizers of (1) when the sin-
gular values of A are strictly less than one. Convergence analysis of
algorithms designed for minimizing the lq PLS criterion, q 2 (0, 1],
is not applicable to the case of the l

0

penalized objective (1) because
it relies on convex arguments when q = 1, and continuity and/or
differentiability of the criterion when q 2 (0, 1).

This papers contribution is a new MM algorithm with momen-
tum acceleration, called Momentumized IST (MIST), for minimiz-
ing the l

0

PLS criterion (1) along with a proof of its convergence to a
single local minimizer without any assumptions on A. Simulations
on large data sets are carried out, which show that the proposed al-
gorithm outperforms existing methods for minimizing (1), including
modified MM methods originally designed for the l

1

PLS criterion.
The paper is organized as follows. Section 2 reviews some of

background on MM that will be used to develop the proposed con-
vergent algorithm. The proposed algorithm is given in Section 3, and
Section 4 contains the convergence analysis. Lastly, Section 5 and 6
presents the simulations and concluding remarks respectively.

An extended version of this paper is available [15] with more
examples and more detailed proofs.

1.2. Notation

v[i] is the i-th entry of vector v. kMk is the spectral norm of matrix
M. I(·) is the indicator function = 1 if its argument is true, and 0
otherwise. So, kvk

0

=

P
i I(v[i] 6= 0). sgn(·) is the sign function.

{xk}k�0

is a sequence, and {xkn}n�0

a subsequence (kn  kn+1

).
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2. PRELIMINARIES

Denoting the least squares term in (1) by: f(x) = 1

2

ky�Axk2
2

, the
Lipschitz continuity of rf(·) implies:

f(z)  f(x) +rf(x)T (z� x) +

µ
2

kz� xk2
2

for all x, z, µ � kAk2. For the proof see [8, Lemma 2.1]. As a
result, the following approximation of the objective function F (·) in
(1),

Qµ(z,x) = f(x) +rf(x)T (z� x) +

µ
2

kz� xk2
2

+ �kzk
0

(2)

is a majorizing function, i.e.,

F (z)  Qµ(z,x) for any x, z, µ � kAk2. (3)

Let Pµ(x) be any point in the set argmin

z

Qµ(z,x), we have:

F (Pµ(x))

(3)

 Qµ(Pµ(x),x)  Qµ(x,x) = F (x), (4)

where the stacking of (3) above the first inequality indicates that this
inequality follows from Eq. (3). The proposed algorithm is con-
structed using the above MM framework with a momentum acceler-
ation designed based on the following:

Theorem 1. Let Bµ = µI�A

T
A, where µ > kAk2, and:

↵ = 2⌘

✓
�T

Bµ(Pµ(x)� x)

�T
Bµ�

◆
, ⌘ 2 [0, 1], (5)

where � 6= 0. Then, F (Pµ(x+ ↵�))  F (x).

For the proof see the Appendix.

2.1. Evaluating the Operator Pµ(·)

Since (2) is non-convex there may exist multiple minimizers of
Qµ(z, ·) so that Pµ(·) may not be unique. We select a single
element of the set of minimizers as described below. By simple
algebraic manipulations of the quadratic quantity in (2), letting:

g(x) = x� (1/µ)rf(x), (6)

it is easy to show that:

Qµ(z,x) =
µ
2

kz� g(x)k2
2

+ �kzk
0

+ f(x)� 1

2µ
krf(x)k2

2

,

and so, Pµ(·) is given by:

Pµ(x) = argmin

z

1

2

kz� g(x)k2
2

+ (�/µ)kzk
0

. (7)

For the proposed algorithm we fix Pµ(·) = H�/µ(g(·)), the point to
point map defined in the following Theorem.

Theorem 2. Let the hard-thresholding (point-to-point) map Hh(·),
h > 0, be such that for each i = 1, . . . ,m:

Hh(g(v))[i] =

8
>><

>>:

0 if |g(v)[i]| <
p
2h

g(v)[i] I(v[i] 6= 0) if |g(v)[i]| =
p
2h

g(v)[i] if |g(v)[i]| >
p
2h.

(8)

Then, H�/µ(g(·)) 2 argmin

z

Qµ(z, ·).
The proof is in the Appendix.

Clearly Theorem 1 holds with Pµ(·) replaced by H�/µ(g(·)).
The motivation for selecting this particular minimizer is Lemma 2 in
Section 4.

3. THE ALGORITHM

The proposed MIST algorithm is constructed by repeated application
of Theorem 1 where � is chosen to be the difference between the
current and the previous iterate, i.e.,

xk+1

= H�/µ

✓
wk � 1

µ
rf(wk)

◆
, wk = xk + ↵k�k (9)

with ↵k given by (5), where �k = xk�xk�1

. The iteration (9) is an
instance of a momentum accelerated IST algorithm, similar to Fast
IST Algorithm (FISTA) introduced in [8] for minimizing the convex
l
1

PLS criterion. In (9), �k is called the momentum term and ↵k is a
momentum step size parameter. A more explicit implementation of
(9) is given below.

Momentumized IST (MIST) Algorithm

Compute ¯

y = (y

T
A)

T off-line. Choose x

0

and let x�1

= x

0

.
Calculate kAk2 off-line, let µ > kAk2 and k = 0. Then:

(1) If k = 0, let ↵k = 0. Otherwise, compute:
(a) uk = Axk

(b) vk = (u

T
k A)

T

(c) gk = xk � 1

µ (vk � ¯

y)

(d) pk = H�/µ(gk)� xk

(e) �k = xk � xk�1

and �k = µ�k � vk + vk�1

(f) Choose ⌘k 2 (0, 1) and compute:

↵k = 2⌘k

✓
�T
k pk

�T
k �k

◆
(10)

(2) Using (c), (e) and (f) compute:

xk+1

= H�/µ

✓
gk +

↵k

µ
�k

◆
(11)

(3) Let k = k + 1 and go to (1).

Remark 1. Thresholding using (8) is simple, and can always be
done off-line. Secondly, note that MIST requires computing only
O(2md) products, which is the same order required when the mo-
mentum term �k is not incorporated, i.e., ⌘k = 0 for all k. In
this case, MIST is a generalization of IHT from [1, 10]. Other mo-
mentum methods such as FISTA [8] and its monotone version M-
FISTA [11] also require computing O(2md) and O(3md) products,
respectively.

4. CONVERGENCE ANALYSIS

Here we prove that MIST converges to a local minimizer of F (·).
Theorem 3. Suppose {xk}k�0

is a bounded sequence generated by
the MIST algorithm. Then xk ! x• as k ! 1, where x• is a local
minimizer of (1).

The proof requires several lemmas. In Lemma 1 and 2 it is as-
sumed that MIST reaches a fixed point only in the limit, i.e., xk+1

6=
xk for all k. This implies that �k 6= 0 for all k.
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Lemma 1. xk+1

� xk ! 0 as k ! 1.

The following lemma motivates Theorem 2 and is crucial for the
subsequent convergence analysis.

Lemma 2. Assume the result in Lemma 1. If xkn ! x• as n !
1, then:

H�/µ

✓
wkn � 1

µ
rf(wkn)

◆
! H�/µ

✓
x• � 1

µ
rf(x•)

◆
, (12)

where wkn = xkn + ↵kn�kn .

Lemma 3. Suppose x• is a fixed point of MIST. Letting Z = {i :
x•[i] = 0} and Zc

= {i : x•[i] 6= 0},

(C
1

) If i 2 Z , then |rf(x•)[i]| 
p
2�µ.

(C
2

) If i 2 Zc, then rf(x•)[i] = 0.

(C
3

) If i 2 Zc, then |x•[i]| �
p

2�/µ.

Lemma 4. Suppose x• is a fixed point of MIST. Then there exists
✏ > 0 such that F (x•) < F (x• + d) for any d satisfying kdk

2

2
(0, ✏). In other words, x• is a strict local minimizer of (1).

Lemma 5. The limit points of {xk}k�0

are fixed points of MIST.

Due to lack of space only a sketch of the proofs is provided in
the Appendix. Detailed proofs are given in [15].

5. SIMULATIONS

Here we demonstrate the performance advantages of the proposed
MIST algorithm in terms of convergence speed. The methods used
for comparison are the well known MM algorithms: ISTA and
FISTA from [8], as well as M-FISTA from [11], where the soft-
thresholding map is replaced by the hard-thresholding map. In this
case, ISTA becomes identical to the IHT algorithm from [1, 10],
while FISTA and M-FISTA become its accelerated versions, which
exploit the ideas in [16].

A popular compressed sensing scenario is considered with the
aim of reconstructing a length m sparse signal x from d observations
(d < m). A relatively high dimensional example is considered: d =

2

13

= 8192 and m = 2

14

= 16384, and x contains 150 randomly
placed ±1 spikes (0.9% non-zeros). Ad⇥m contains independent
samples from the standard Gaussian distribution, and the standard
deviation of the observation noise ✏ is � = 3, 6, 10.

The Signal to Noise Ratio (SNR) is defined by: SNR =

10 log

10

�
kAxk2

2

/(�2d)
�
. For example plots of Ax and ✏ when

� = 3 (SNR=12), � = 6 (SNR=6) and � = 10 (SNR=1.7) see
Figures 1, 2 and 3 in [15] respectively.

5.1. Results

All algorithms are initialized with x

0

= 0, and are terminated when
|F (xk) � F (xk�1

)|/F (xk) < 10

�10. In the MIST algorithm we
let µ = kAk2 + 10

�15 and ⌘k = 1� 10

�15. All experiments were
run in MATLAB 8.1 on an Intel Core i7 processor with 3.0GHz CPU
and 8GB of RAM.

As x is generally unknown to the experimenter we also report
results of using a model selection method to select �. Since clas-
sical methods tend to select a model with many spurious compo-
nents when m is large and d is comparatively smaller [17], we use

the Extended Bayesian Information Criterion (EBIC) model selec-
tion method proposed in [17]. The EBIC criterion is defined by
EBIC(�) = log

⇣
ky�Abxk22

d

⌘
+

�
log d
d + 2� logm

d

�
kbxk

0

, where b
x =

b
x(�) is the estimator of x produced by a particular algorithm, and the
chosen � in (1) is the minimizer of the EBIC. As suggested in [17],
� = 1� 1/(2), where  is the solution of m = d, i.e.,  ⇡ 1.08.

Fig. 1: Average time vs. � over 5 instances when SNR=1.7 and 12.
For the comparison, 20 equally spaced values of � are considered,
where 10

�4kAT
yk1  �  0.2kAT

yk1. As it can be seen, ex-
cept in the scenario when � = 10

�4kAT
yk1 the MIST algorithm

outperforms the others. The smallest averaged argmin� EBIC(�)
from the four algorithms is � = 0.03kAT

yk1 for SNR=1.7 and
� = 0.017kAT

yk1 for SNR=12. The comparisons for SNR=6 are
similar to the ones above, see Figure 11 in [15].

Based on a large number of experiments we noticed that MIST,
FISTA and ISTA usually outperformed M-FISTA in terms of run
time. This could be due to the fact that M-FISTA requires computing
a larger number of products, see Remark 1, and the fact that it is a
monotone version of a severely non-monotone FISTA. The high non-
monotonicity could possibly be due to non-convexity of the objective
function F (·).

6. CONCLUSION

We have developed a momentum accelerated MM algorithm, MIST,
for minimizing the l

0

penalized least squares criterion for linear re-
gression problems. We have provided sketch proofs of the conver-
gence of MIST to a local minimizer without imposing any assump-
tions on the regression matrix A. Simulations on large data sets have
shown that the MIST algorithm outperforms other popular MM al-
gorithms in terms of run time and number of iterations.

7. APPENDIX

Sketch Proof of Theorem 1: Let w = x + ��. The quantities
f(w), rf(w)

T
(z�w) and kz�wk2

2

are quadratic functions, and
by simple linear algebra they can easily be expanded in terms of
z, x and �. Using these expansions and the definition of Qµ(·, ·)
it can also be shown that: Qµ(z,w) = Qµ(z,x) + �µ(z, �,�),
where �µ(z, �,�) =

1

2

�2�T
Bµ� � ��T

Bµ(z � x). Observing
that �T

Bµ� > 0, let:

� = 2⌘
�T

Bµ(z� x)

�T
Bµ�

, ⌘ 2 [0, 1]. (13)
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Fig. 2: Algorithm comparisons based on relative error |F (xk) �
F ?|/|F ?| where F ? is the final value of F (·) obtained by each al-
gorithm at its termination, i.e., F ?

= F (xk), where F (xk) satisfies
the termination criterion. All the algorithms use a common � which
is chosen to be the smallest � from the averaged argmin� EBIC(�)
obtained by each algorithm (over 10 instances). As it can be seen, in
the high noise environment (SNR=1.7) the MIST algorithm outper-
forms the rest, both in terms of time and iteration.

Fig. 3: Similar comparisons as in Fig. 2 except that SNR=6. As
it can be seen, in the intermediate noise environment the MIST al-
gorithm outperforms the others, both in terms of time and iteration
number. The algorithm comparisons for SNR=12 are very similar to
the ones here, see Figure 4 in [15].

Then, one has:

Qµ(Pµ(w),w) = min

z

Qµ(z,w)  Qµ(z,w)

= Qµ(z,x) + �µ(z, �,�)

(13)

= Qµ(z,x)� 2⌘(1� ⌘)
[�T

Bµ(z� x)]

2

�T
Bµ�

(14)

 Qµ(z,x), (15)

which holds for any z. So, letting z = Pµ(x) implies:

F (Pµ(w))

(4)

 Qµ(Pµ(w),w)

(15)

 Qµ(Pµ(x),x)
(4)

 F (x),

which completes the sketch proof. For the complete proof see [15,
proof of Theorem 1].

Sketch Proof of Theorem 2: Looking at (7), Pµ(·)[i] = argmin

z[i]
1

2

(z[i]�g(·)[i])2+(�/µ)I(z[i] 6= 0). The result then easily follows
by considering [18, Theorem 1], see [15, proof of Theorem 2].

Sketch Proof of Lemma 1: From Theorem 1, 0  F (xk+1

) 
F (xk), so the sequence {F (xk)}k is bounded meaning it has a finite

limit, say, F•. As a result:

F (xk)� F (xk+1

) ! F• � F• = 0 (16)

Next, recall that wk = xk + ↵k�k and g(·) = (·) � 1

µrf(·). So,
using (14) in the proof of Theorem 1, the MM inequalities in (4) and
the definition of ↵k in (10), it can easily be shown that:

Qµ(xk+1

,wk)  F (xk)� �k↵
2

k�
T
k Bµ�k, (17)

where �k = (1�⌘k)/⌘k > 0. Using the fact that: Qµ(xk+1

,wk) =

F (xk+1

)+

1

2

(xk+1

�wk)
T
Bµ(xk+1

�wk), which easily follows
from basic linear algebra, it can be shown that (17) implies:

F (xk)� F (xk+1

) � ⇢�k↵
2

kk�kk22 +
⇢
2

kxk+1

�wkk2
2

, (18)

where ⇢ > 0 is the smallest eigenvalue of Bµ � 0. So, both terms
on the right hand side in (18) are � 0 for all k. As a result, due
to (16) we can use the pinching argument on (18) to establish that
xk+1

� wk = �k+1

� ↵k�k ! 0 and ↵k�k ! 0 as k ! 1.
Consequently, �k ! 0 as k ! 1, which completes the sketch
proof. For the complete proof see [15, proof of Lemma 1].

Proof of Lemma 2: See [15, proof of Lemma 2].

Sketch Proof of Lemma 3: The fixed points are obtained by setting
xk+1

= xk = xk�1

= x•. So, any fixed point x• satisfies the
fixed point equation: x• = H�/µ

⇣
x• � 1

µrf(x•)
⌘

. The result is
then easily established by substituting the definition of H�/µ(g(·))
from (8) into the stated fixed point equation and solving the resulting
equation. For the complete proof see [15, proof of Lemma 3].

Sketch Proof of Lemma 4: Letting Z = {i : x•[i] = 0} and
Zc

= {i : x•[i] 6= 0}, it can easily be shown that F (x• + d) =

F (x•) + �(d), where:

�(d) =
1

2

kAdk2
2

+ d

Trf(x•) + �kx• + dk
0

� �kx•k0

�
X

i2Z

d[i]rf(x•)[i] + �I(d[i] 6= 0)

| {z }
=�Z (d[i])

+

X

i2Zc

d[i]rf(x•)[i] + �I(x•[i] + d[i] 6= 0)� �
| {z }

=�Zc (d[i])

Since �Z(0) = �Zc
(0) = 0, all that needs to be shown is that there

exists � > 0 such that �Z(d[i]) > 0 and �Zc
(d[i]) > 0 for any

|d[i]| 2 (0, �). Letting � = �/
p
2�µ, it can easily be shown that

�Z(d[i]) > 0 by considering C
1

in Lemma 3. Using C
2

and C
3

in
Lemma 3 we have �Zc

(d[i]) = 0 since rf(x•[i]) = 0, |x•[i]| �p
2�/µ and |d[i]| < �/

p
2�µ <

p
2�/µ, completing the sketch

proof. For a detailed proof see [15, proof of Lemma 4].

Proof of Lemma 5: See [15, proof of Lemma 5].

Proof of Theorem 3: By Lemma 1 and Ostrowski’s result [19, The-
orem 26.1], the bounded {xk}k�0

converges to a closed and con-
nected set, i.e., the set of limit points form a closed and connected
set. But, by Lemma 5 these limit points are fixed points, which by
Lemma 4 are strict local minimizers. So, since the local minimizers
form a discrete set the connected set of limit points can only contain
one point, and so, the entire {xk}k�0

must converge to a single local
minimizer.
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