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ABSTRACT

In handling massive-scale signal processing problems arising from
‘big-data’ applications, key technologies could come from the de-
velopment of decentralized algorithms. In this context, consensus-
based methods have been advocated because of their simplicity, fault
tolerance and versatility. This paper presents a new consensus-based
decentralized algorithm for a class of non-convex optimization prob-
lems that arises often in inference and learning problems, including
‘sparse dictionary learning’ as a special case. For the proposed al-
gorithm, we provide sufficient conditions for convergence to a sta-
tionary point. Numerical results demonstrate the efficacy of the pro-
posed algorithm and provide evidence that validates our convergence
claim.

Index Terms— dictionary learning, decentralized algorithm,
non-convex optimization

1. INTRODUCTION

In recent years, one of the biggest challenges in signal processing
is on finding ways to deal with enormous amount of data generated
by sources such as online social media, mobile apps, cyber physical
systems, etc [1,2]. The massive memory and computational require-
ments of these problems calls for a paradigm shift in the design of
signal processing algorithms. Specifically, it calls for decentralized
methods that can leverage on the collective computational and stor-
age power of a cluster of computers (a.k.a. the cloud) to expedite the
process.

In light of the need for large scale signal processing, the idea of
consensus-based optimization provides an attractive option for de-
veloping decentralized methods [3, 4]. The main idea is to enforce
consensus via information diffusion over a network of computing
nodes, while simultaneously performing locally first-order updates,
like a gradient descent. Such methods have the advantages that they
require only local computation and can often be implemented with
low complexity [3, 4].

This paper considers the problem of dictionary learning (DL)
[5, 6] as an example of the large-scale signal processing problems
that may be applied to massive amounts of data. In DL, the goal is
to find an appropriate basis (a.k.a. the dictionary) for the signals ob-
served (e.g., a sequence of images, or a collection of articles) such
that a sparse representation is possible for all the information con-
tained in the database. Having learnt the dictionary from a set of
training data, we can go on to compress the whole set of data, storing
only the sparse coefficients vectors. The DL problem can be cast as a
bi-convex optimization problem, tackled by many existing methods
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(see e.g. the overview in [5, Chapter 12]). However, most of the ex-
isting algorithms for DL are centralized. Motivated by the impend-
ing need of finding parallel computation methods for these problems
that would scale as the amount of data grows large, we study the
decentralized implementation of bi-convex optimization problems.

More specifically, in this paper our aim is to develop a consensus-
based optimization algorithm for a class of large-scale, non-convex
optimization problems. The latter includes the DL problem as a
special case. Our method combines the exact first-order algorithm
(EXTRA) algorithm in [7] with a local proximal gradient update.
Through theoretical analysis and numerical experiments, we show
that the developed algorithm converges to a stationary point of the
DL problem. To the best of our knowledge, the algorithm we pro-
posed is the first of this kind that comes with evidence (at least
empirically) of reaching convergence to stationary points.

1.1. Relation to Prior Work

Consensus-based decentralized algorithms to solving optimization
problems have been proposed in a number of previous works, e.g.,
[3, 4, 7–12]. The convergence of these algorithms have been estab-
lished in [3, 4, 7, 11, 12]. Some recent developments include the
EXTRA algorithm proposed in [7], which guarantees convergence
of the consensus-based gradient descent algorithm using fixed step
size. Combined algorithms that mix consensus technique with other
optimization methods have also been developed, e.g., the alternating
direction method of multipliers (ADMM) [13–15], the primal-dual
method [16] and the Gauss-Newton method [17]. Most of this prior
art focuses on convex optimization problems. Only a few related
works on consensus-based decentralized algorithms exist for non-
convex optimization, e.g., [14,17–19]. In particular, a stochastic de-
centralized algorithm have been proposed in [18] for tackling a class
of non-convex problems.

In this work, we focus on the commonly encountered class of
bi-convex optimization problem [20]. Examples of such optimiza-
tion problems include the non-negative matrix factorization [21],
low-rank matrix completion [14], DL problem [5, 6], etc. For the
DL problem, [19] proposes an algorithm that most resembles ours,
since it employs a consensus-based (proximal) gradient descent.
This method will be described in detail later. Lastly, [14] has stud-
ied a consensus-based decentralized algorithm for low-rank matrix
completion, which can be applied to the DL problem. However, the
algorithm in [14] has higher complexity compared to ours.

2. PROBLEM FORMULATION

Consider N networked agents for which the interconnectivity be-
tween the agents is described by an undirected graph G = (V, E).
Each agent i is assigned with a local cost function fi(x,yi) that de-
pends on a global variable x and a local variable yi. The global cost
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function is defined as the sum of these local cost function. Our aim
is to tackle the following optimization problem:

min
x,{yi}Ni=1

N∑
i=1

(
fi(x,yi) + hi(yi)

)
, (1)

where x ∈ Rm and yi ∈ Rn are the optimization variables. We
have assumed the following regarding (1):

1. The function fi(x,yi) is bi-convex and it may not be jointly
convex in (x,yi).

2. The function hi(yi) is convex and can possibly be non-
smooth.

3. The function fi(x,yi) is continuously differentiable with re-
spect to (w.r.t.) x and yi. Moreover, its gradient is Lipschitz
continuous with the constants Lx and Ly , respectively.

This paper focuses on a decentralized algorithm for solving (1).
Our study is motivated by the following dictionary learning (DL)
problem:

min
X,Y

1

2
‖S−XY‖2F + λ‖Y‖1 +

M∑
`=1

γ`‖X:,`‖22. (2)

where [X]:,` denotes the `th column in matrix X. The regulariza-
tion terms ‖Y‖1 and ‖X:,`‖22 are introduced respectively to promote
sparsity and to ensure that the solution X is bounded. In the data
model underlying (2), the matrix S ∈ Rm×M contains M columns
of training data, in which each of them is assumed to be a linear
combination of the column vectors in the dictionary X ∈ Rm×n,
with the coefficients contained in the columns of Y ∈ Rn×M . It is
assumed that S is sparse such that each column of Y is formed by
combining only a few columns from the dictionary X, i.e., we have
S = XY.

As an application for the algorithm developed, this paper con-
siders a distributed implementation of (2) in a sensor network set-
ting. In particular, each agent collects training data Si independently
while all agents want to learn a common dictionary X. We write
S = [S1 S2 · · · SN ] and Y = [Y1 Y2 · · · YN ]. To this end, we
can rewrite (2) as follows:

min
X,{Yi}Ni=1

1

2

N∑
i=1

(
‖Si−XYi‖2F+λ‖Yi‖1

)
+

n∑
`=1

γ`‖X:,`‖22. (3)

This is a special case of (1) with fi(X,Yi) = (1/2)‖Si−XYi‖2F+
(1/N)

∑n
`=1 γ`‖X:,`‖22 and hi(Yi) = λ‖Yi‖1.

3. PROPOSED ALGORITHM

Next we describe the proposed algorithm, called EXTRA-AO, for
solving (1) using consensus-based information exchange.

3.1. Decentralized Alternating Optimization Algorithms

We first observe that (1) is a non-separable and non-convex problem.
The non-separability prevents us from solving (1) directly via de-
centralized optimization, while the non-convexity prevents us from
applying safely existing decentralized algorithms.

A natural way to dealing with (1) is to employ an alternating
optimization (AO) approach — we fix x while optimizing {yi}Ni=1;
then we fix {yi}Ni=1 while optimizing x. As the objective function
is bi-convex, algorithms such as (proximal) gradient methods can be

applied to each of the two sub-optimizations above. For instance, the
following recursion is frequently used, e.g., [22]:

xk = xk−1 − αk
∑N
i=1∇xfi(x

k−1,yk−1
i ) (4)

yki = proxβkhi(·)
(
yk−1
i − βk∇yfi(x

k,yk−1
i )

)
, ∀ i, (5)

where αk, βk > 0 are the step sizes to be specified later. Notice that
in (5), the proximal operator is defined as:

proxβkhi(·)(y) = arg min
z∈Ci

1

2
‖y − z‖22 + βkhi(z). (6)

A popular example is hi(yi) = ‖yi‖1. In this case, the proximal
operator is equivalent to the soft thresholding operator [23]. The
latter can be computed in closed form.

It is obvious that once xk−1 becomes available at agent i, the
update for yki is distributable (cf. (5)). The important issue is how to
tackle the optimization w.r.t. x in a decentralized manner.

We observe that x is a global variable that has to be agreed upon
with the other agents in the network. A possible solution to opti-
mizing x is to apply the decentralized gradient descent algorithms,
e.g., in [24]. In fact, this is the method proposed in [19] to tackle the
distributed DL problem (cf. (3)). The following adapt-then-combine
(ATC) strategy is taken to compute xki at agent i. We replace (4)
with: {

x̂ki = xk−1
i − αk∇xfi(x

k−1
i ,yk−1

i ),

xki =
∑N
j=1Wij x̂

k
j ,

(7)

where the symmetric matrix W ∈ RN×N satisfying W1 = 1 and
1TW = 1T is a mixing matrix. The choice of W is constrained by
the network topology G such that Wij 6= 0 only when (i, j) ∈ E1.

We note that the first equation in (7) computes a local update for
xi based on the local variable yki , then the second equation promotes
consensus amongst the local updates computed by the neighboring
agents. Due to the fact that W is constrained by the network topol-
ogy, (7) can be implemented via local computations and information
exchange. Furthermore, parallel processing is also possible as (5)
and (7) are equations that can be processed locally except for the
combination step in (7).

However, the recursions (5) and (7) are not guaranteed to con-
verge to a stationary point of (1) in general. Under a fixed step size
rule, i.e., αk = α for all k, it can be shown that the recursion (5)
and (7) may converge to a solution such that xki 6= xkj , i.e., consen-
sus cannot be reached; on the other hand, when the step size αk is
diminishing, our numerical experiments suggest that the algorithm
may not converge to a stationary point of (1) at all. An example of
lack of convergence is the numerical simulations shown in Fig. 1,
illustrating that the ATC-AO with a fixed step size does not lead to a
solution that reaches consensus.

3.2. EXTRA-AO Algorithm

The previous discussion suggests that one has to apply a different
strategy for the decentralized update of x. For this reason we lever-
age an alternative idea proposed in [7], called the exact first order
algorithm (EXTRA). The algorithm is described in the next page by
(8) together with the pseudo code of EXTRA-AO in Algorithm 1.
An important feature of the EXTRA update is that a fixed step size
is used throughout the algorithm. As seen in [7], this strategy can
achieve consensus and optimality simultaneously when applied to
convex optimization problems.

1Note that self-edge is assumed to be present in G such that (i, i) ∈ E .

3547



Fig. 1: Convergence behavior of the algorithms for distributed DL (3). The
simulation details are given in Section 4. We compare the ‘consensus error’,
(1/N)

∑N
i=1 ‖x

k
i − (1/N)

∑N
j=1 xk

j ‖
2, and the ‘norm of gradient’ w.r.t. x,

‖
∑N

i=1∇xfi(x
k
i ,y

k
i )‖

2, against the iteration number. In addition, the ‘norm of
difference’ for EXTRA-AO denotes ‖xk − xk−1‖22 + ‖yk − yk−1‖22.

We now discuss about the EXTRA update for x. The EXTRA
step (8) combines both consensus and gradient descent, where the
optimization variables from the previous two iterations are required.
Note that, in (8), W̃ = (I + W)/2 has the same sparsity as W,
therefore similar to the ATC strategy described previously, the EX-
TRA update can also be computed via local computations and infor-
mation exchange with the neighboring agents.

Next, we provide some insights into the convergence of EXTRA-
AO. To facilitate our discussions, let us introduce the following
variables/functions:

xk , [xk1 xk2 · · · xkN ]T , yk , [yk1 yk2 · · · ykN ]T , (10)

f(x,y) , [f1(x1,y1) · · · fN (xN ,yN )]T , (11)

∇xf(x,y) , [∇xf1(x1,y1) · · · ∇xfN (xN ,yN )]T , (12)

f(x,y) ,
∑N
i=1 fi(xi,yi) = 1T f(x,y). (13)

Notice that both xi and yi are given as column vectors, therefore
xk ∈ RN×m and yk ∈ RN×n. A sufficient condition for EXTRA-
AO to reach a stationary point of (1) is as follows:

Proposition 1 Assume that null{I −W} = span{1}. Suppose
that the sequence {(xk,yk)}k generated by EXTRA-AO converges
to a point (x∞,y∞), then (x̂∞,y∞) is a stationary point to prob-
lem (1), where x̂k , (1/N)1Txk.
Proof. We observe that the update equation (8) can be rewritten as
follows. For example, at k = 2, we have

x2 = Wx1 − α∇xf(x
1,y1) + x1 − (W̃x0 − α∇xf(x

0,y0))

= Wx1 − α∇xf(x
1,y1) + (W − W̃)x0,

where the second equality is due to (8) with k = 1. By induction on
k = 3, 4, ..., we obtain:

xk+1 = Wxk − α∇f(xk,yk) + (W − W̃)
∑k−1
t=0 xt (14)

Since 1T (W − W̃) = 0, multiplying (1/N)1T from the left of
both side yields

x̂k+1 = x̂k − (1/N)1T∇xf(x
k,yk), (15)

Note that (15) is analogus to the centralized gradient descent in (4).

Algorithm 1 The EXTRA-AO algorithm for (1).

1: Initialize: {x0
i }Ni=1, {y0

i }Ni=1;
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., N do
4: Agent i computes the following EXTRA update for xi:

xki =



N∑
j=1

Wijx
k−1
j − α∇xfi(x

k−1
i ,yk−1

i ), if k = 1,

xk−1
i +

N∑
j=1

Wijx
k−1
j − α∇xfi(x

k−1
i ,yk−1

i )

−
N∑
j=1

W̃ijx
k−2
j + α∇xfi(x

k−2
i ,yk−2

i ), if k > 1,

(8)

where α > 0 is a fixed step size and W̃ = (I + W)/2.
Notice that W̃ can also take a different form with more
relaxed conditions, see [7].

5: Agent i computes the following update for yi:

yki = proxβhi(·)

(
yk−1
i − β∇yfi(x

k
i ,y

k−1
i )

)
(9)

6: end for
7: end for
8: Return: {xki }Ni=1, {yki }Ni=1.

Now, if the sequence {xk,yk}k converges to a unique limit
point (x∞,y∞) as k →∞, in the limit the EXTRA update in (8) is

(W − W̃)x∞ = 0. (16)
As null{W − W̃} = span{1}2, the above implies x∞i = x̂∞ for
all i, i.e., consensus is achieved as k → ∞. Lastly, applying this to
(15) with k →∞ gives:

0 = (1/N)1T∇xf(x
∞,y∞), (17)

which implies that x̂∞ is a stationary point of (1), given y∞.
On the other hand, if yk is convergent, its limit y∞ is a fixed

point to Eq. (9), given x∞i , i.e.,

y∞i = proxβhi(·)
(
y∞i − β∇yfi(x

∞
i ,y

∞
i )
)
, ∀ i. (18)

As β > 0, the above guarantees that y∞i is a stationary point of (1)
given x∞i = x̂∞. Combining this observation with (17) implies that
(x̂∞,y∞) is a stationary point to (1). Q.E.D.

Showing that the sufficient condition in Proposition 1 holds is
part of the on-going research. We conclude this section with the
following lemma on the choice of step size, whose proof is skipped.

Lemma 1. Suppose that the step sizes α, β in EXTRA-AO satisfy

0 < α < (2λmin(W̃)/Lx), 0 < β < (1/Ly), (19)
3then the following inequalities hold for the objective values of (1)
at each iteration:

f(xk+1,yk)− f(xk,yk) ≤ −δ‖xk+1 − xk‖22
− 1
α

〈
(W̃ −W)

∑k+1
t=0 xt,xk+1 − xk

〉
,

(20)

f(xk+1,yk+1)− f(xk+1,yk) ≤ −(1/2)‖yk − yk+1‖22, (21)

where δ = (λmin(W̃)/α− Lx/2) > 0 is a constant.

2Note that as W− W̃ = (W− I)/2, we have x ∈ null{W− W̃} =
null{W − I} = span{1} under the premise of Proposition 1.

3In practice, a small stepsize would suffice for the algorithm to converge.
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Fig. 2: The objective value against the iteration number for the distributed DL algo-
rithms. The same step size selection as in Fig. 1 is used. Notice that the solution of
ATC-AO with fixed step size does not reach consensus and is infeasible to (3).

The key to proving the above Lemma is to apply the descent lemma
[25] and the global inequality [23] to Eqs. (8) and (9), respectively
and exploiting the simplified EXTRA update (14).

The above lemma provides a guideline for choosing the step size
for EXTRA-AO. In addition, when the latter term in (20) is non-
negative or vanishing, the objective value achieved by EXTRA-AO
is non-increasing, combining this with (21) imply that yk converges
as ‖yk − yk+1‖ → 0.

3.3. Distributed DL using EXTRA-AO

To apply EXTRA-AO to the distributed DL problem (3), we note
that the global variable x should be taken as the dictionary X; while
the local variable yi is taken as the sparse coefficients Yi. For sim-
plicity, we also take γ` = γ for all `. Notice that the latter term
in the objective function of (3) can now be written as γ‖X‖2F . The
gradient matrices of fi(Ai,Si) w.r.t. Ai and Si are needed in (8)
and (9). They are given as follows:

∇Xfi(X
k
i ,Y

k
i ) = (Xk

iY
k
i − Si)(Y

k
i )
T + (γ/N)Xk

i , (22)

∇Yfi(X
k
i ,Y

k
i ) = (Xk

i )
T (Xk

iY
k
i − Si) (23)

Eq. (22) can be computed efficiently as Yi is sparse. As for the
proximal operation in (9), since hi(Yi) = ‖Yi‖1, it can be replaced
by the soft shrinkage operator [23].

4. NUMERICAL RESULTS
This subsection presents numerical results to demonstrate the effi-
cacy of the proposed EXTRA-AO algorithm for DL. To prepare the
training data, we have randomly extracted 300 overlapping patches,
each with size 16×16, from the 512×512 image of barbara.png,
as shown in Fig. 4. Each of the extracted patch is vectorized, thereby
giving S a size of 256×300. We assume that there are n = 64 atoms,
thereby giving a compression ratio of 1/4. The size of the common
dictionary X is 256 × 64. Notice that our algorithm is scalable to
handle problems of larger scale.

For the distributed DL problem (3), we set λ = 0.03 and γ =
γ` = 0.1 as the regularization parameters. The columns of the train-
ing data matrix Y is divided into N = 10 equally sized partitions
Si ∈ R256×30. It corresponds to the scenario when 10 sensors are
taking samples from the image for dictionary learning. In addition to
learning the dictionary X distributively, each agent is responsible for
computing the sparse matrix Yi of size 64 × 30 only. The network
connectivity graph G is generated as an Erdos-Renyi random graph
with a connection probability of p = 0.6 as well as self-edges. The
matrix W is constructed using the Metropolis-Hastings rule [26].

The performance of EXTRA-AO is compared to ATC-AO in
[19] and the Method of Optimal Directions (MOD) in [27], where
the latter is a centralized algorithm for DL. We initialized the algo-
rithms with X set as the 2D discrete cosine transform (DCT) ma-
trix. For EXTRA-AO and ATC-AO with fixed step size, we set

Fig. 3: The dictionary learnt from the image: (Left) using the ATC-AO algorithm after
2 × 104 iterations. (Right) using the EXTRA-AO algorithm after 2 × 104 iterations.
Each 8× 8 patch represents an atom in the dictionary.

Fig. 4: Reconstructing the images: (Left) the original image with the 30 shaded masks
representing the training samples taken by one agent. (Right) by sparse coding using the
dictionary learnt in EXTRA-AO after 2× 104 iterations.

α = 0.03 and β = 0.02, ATC-AO with diminishing step size is
set with αk = βk = 0.02 · 10

(k/100)+10
.

We first verify that the EXTRA-AO algorithm achieves conver-
gence to a stationary point of (3). As shown in Fig. 1, the norm of
difference between successive iterations decreases to 0 as k → ∞,
thereby satisfying the sufficient condition in Proposition 1. We also
note that the solution Xi obtained at ATC-AO (with fixed step size)
does not achieve consensus and is thus infeasible to (1).

In Fig. 2, we compare the objective value against the number
of iteration. As seen, EXTRA-AO achieves a comparable objective
value to the MOD algorithm. The estimated dictionary is depicted in
Fig. 3, which shows a combination of rotated tiles that correspond
to the common features found in barbara.png. Upon careful
observation, we also found that some of the atoms (e.g., the (3, 4)th
atom) learnt by EXTRA-AO shows clearer edges than ATC-AO.

Lastly, Fig. 4 shows the reconstruction result after sparse de-
coding using the dictionary learnt before. To promote sparsity, the
sparse decoding is performed with λ = 0.1, the resulting sparse
code contains only 32.12% of non-zero entries, i.e., there are about
21 non-zero coefficients out of 64 for every 16× 16 patch. As seen,
the image reconstructed shows only a reasonable amount of artifacts
compared to the original image.

5. CONCLUSION

In this paper, we have proposed a new consensus-based decentral-
ized algorithm called EXTRA-AO. The algorithm is applicable to
a class of non-convex optimization problems, which has only been
considered in a few applications of consensus-based algorithms be-
fore. We have also provided a sufficient condition for the proposed
EXTRA-AO to reach a stationary point. It was checked empirically
to hold in our numerical results on the dictionary learning problem.
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