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ABSTRACT

Recently, the alternating direction method of multipliers(ADMM)
has been used for distributed consensus optimization and isshown
to converge faster than conventional approaches based on consensus
subgradient. In this paper, we consider a convex optimization prob-
lem with a linearly coupled equality constraint and employ adual
consensus ADMM (DC-ADMM) method for solving the problem
in a fully distributed fashion. In particular, by considering a non-
ideal network where the agents can be ON and OFF randomly and
the communications among agents can fail probabilistically, we pro-
pose a randomized DC-ADMM method that is robust against these
non-ideal effects. Moreover, we show that the proposed random-
ized method is provably convergent to an optimal solution and has a
worst-caseO(1/k) convergence rate, wherek is the iteration num-
ber. Simulation results are presented to examine the practical conver-
gence behavior of the proposed method in the presence of randomly
ON/OFF agents and non-ideal communication links.

Index Terms— Distributed consensus optimization, multi-agent
network, ADMM, randomized optimization

1. INTRODUCTION

Multi-agent distributed optimization [1] has drawn significant atten-
tion in recent years due to the need for large-scale signal processing
and machine learning tasks over data networks [2]. In particular,
the distributed agents (e.g., data servers) may collaboratively solve a
data regression or learning problem by using only locally collected
data since moving these data over the network may not be always
feasible, especially when the data size is extremely large (e.g., big
data). Many of the signal processing and machine learning problems
can be formulated as the following optimization problem

(P) min
x1,...,xN∈RL

N
∑

i=1

φi(xi) s.t.
N
∑

i=1

Eixi = q, (1)

whereφi : R
L → R ∪ {∞} is a local cost function (possibly nons-

mooth and with extended values) associated with agenti, xi ∈ R
L

is the local regression/decision variable,Ei ∈ R
M×L contains the

locally observed data andq ∈ R
M is a parametric vector which

is assumed to be known by all agents. Applications of(P) include
the basis pursuit (BP), logistic regression and LASSO problems in
machine learning [3], the network flow control problem [4], smart
grid control problem [5] and interference management problem in
communications [6], to name a few. In the context of multi-agent
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optimization, it is assumed that the agents can access the local infor-
mation (i.e.,φi, Ei andq) and exchange messages with neighbors
only, but they want to globally solve the coupled problem(P).

Various distributed optimization methods have been proposed in
the literature for solving problems with the same form as(P). For ex-
ample, the consensus-based primal-dual subgradient methods [7, 8]
can be employed to handle(P). These types of methods are simple
and can handle a wide range of application problems, but the con-
vergence rate is slow in general. Recently, the alternatingdirection
method of multipliers (ADMM) [9, 10] has been used for fast dis-
tributed consensus optimization [11–18]. Specifically, the work [11]
proposed a consensus ADMM (C-ADMM) method for solving a dis-
tributed LASSO problem. The works in [12, 13] proposed several
distributed ADMM (D-ADMM) methods for solving problems with
the same form as(P). However, the D-ADMM methods require each
agent either to update the variables sequentially (not in parallel) or
to solve a min-max (saddle point) subproblem at each iteration. Be-
sides, it is also assumed that certain coloring scheme is available to
the network graph. To overcome these issues, in [14], the authors
proposed a distributed optimization method, called dual consensus
ADMM (DC-ADMM), which solves (P) in a fully parallel manner
over arbitrary networks as long as the network graph is connected.

Recently, there is an increasing interest in asynchronous dis-
tributed ADMM methods; see [16–18]. While the methods in [17,
18] require certain restrictive assumption on the network topology,
the work [16] proposed a randomized ADMM scheme that works
for any connected network graph. In this paper, we adopt the ran-
domized strategy in [16] and propose a randomized DC-ADMM
method that can solve(P) globally even in the presence of randomly
ON/OFF agents and imperfect communication links. In particular,
only agents that are active at the iteration update the localvariable
and exchange messages with neighboring active agents. We show
that the proposed randomized DC-ADMM method converges to an
optimal solution of(P) in the mean and has a worst-caseO(1/k)
convergence rate, wherek is the iteration number. The presented
simulation results show that the proposed randomized method is ro-
bust and converges consistently in the considered non-ideal network
scenarios.

2. NETWORK MODEL AND ASSUMPTIONS

Assume that there areN agents in the network and that the net-
work is modeled as a undirected graphG = {V, E}. HereV =
{1, . . . , N} is the set of agents andE is the set of edges, i.e.,(i, j) ∈
E if and only if agenti and agentj are neighbors and can commu-
nicate with each other. For each agenti, we defineNi = {j ∈ V |
(i, j) ∈ E} as the index subset of neighbors.
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To develop the proposed methods, we make the following as-
sumptions on the network and problem(P).

Assumption 1 (a) The undirected graph G is connected; (b) φi’s
are proper closed convex functions; there is no duality gap between
(P) and its Lagrange dual (i.e., Slater condition); moreover, the min-
imum of (P) is attained and so is its optimal dual value.

Assumption 1(a) implies that neighbor-wise variable consensus can
infer global consensus in the network. Hence, consensus optimiza-
tion can be achieved via neighbor-wise message exchange only. As-
sumption 1(b) implies that(P) is a convex optimization problem and
both the primal and dual optimal solutions are achievable.

3. REVIEW OF DC-ADMM

DC-ADMM is recently proposed in [14] for solving(P) in a fully
distributed manner. The idea of DC-ADMM is based on the La-
grange dual optimization and the consensus ADMM method [11].
To illustrate this method, let us consider the following problem which
is equivalent to the Lagrange dual problem of(P)

min
y∈RM

N
∑

i=1

(

ϕi(y) +
1

N
y
T
q

)

, (2)

wherey ∈ R
M denotes the Lagrange dual variable associated with

the linear equality constraint
∑N

i=1 Eixi = q in (1). In (2), func-
tionsϕi(y) are given by

ϕi(y) , max
xi

{

− φi(xi)− y
T
Eixi

}

∀ i ∈ V. (3)

In the standard dual decomposition method [19], the subproblems in
(3) can be solved by the agents individually provided thaty is given.
However, the dual variabley is not distributed.

To achieve a fully distributed algorithm, one allows each agenti
to have a local copy of the variabley, denoted byyi, while enforc-
ing the distributedyi’s to be the same across the network through
neighbor-wise consensus constraints. This is equivalent to reformu-
lating (2) as the following problem

min
y1,...,yN

{tij}

N
∑

i=1

(

ϕi(yi) +
1

N
y
T
i q

)

(4a)

s.t.yi = tij ∀j ∈ Ni, i ∈ V, (4b)

yj = tij ∀j ∈ Ni, i ∈ V, (4c)

where{tij} are slack variables. Constraints (4a) and (4b) ensure the
neighbor-wise consensus, i.e.,yi = yj ∀j ∈ Ni, i ∈ V. Under As-
sumption 1(a), neighbor-wise consensus is equivalent to the global
consensus; as a result, (4) is equivalent to (2). Next, let usemploy
ADMM [9] to solve (4). It can be shown that [14] the ADMM steps
for solving (4) are given by: for iterationk = 1, 2, · · ·

y
k
i = argmin

yi

{

ϕi(yi) +
1

N
y
T
i q +

∑

j∈Ni

(uk−1
ij + v

k−1
ji )Tyi

+ c
∑

j∈Ni

‖yi − t
k−1
ij ‖

2
2

}

∀i ∈ V, (5)

t
k
ij = t

k
ji =

yk
i + yk

j

2
∀j ∈ Ni, i ∈ V, (6)

u
k
ij = u

k−1
ij + c(yk

i − t
k
ij) ∀j ∈ Ni, i ∈ V, (7)

v
k
ji = v

k−1
ji + c(yk

i − t
k
ji) ∀j ∈ Ni, i ∈ V, (8)

whereuij ∈ R
M , vij ∈ R

M are the Lagrange dual variables asso-
ciated with each of the constraints in (4b) and (4c), respectively, and
c > 0 is a penalty parameter. Equations (5) and (6) involve updat-
ing the primal variables of (4) in a one-round Gauss-Seidel fashion;
while (7) and (8) update the dual variables by subgradient ascent.

Notice that subproblem (5) is a strongly convex problem. How-
ever, it is not easy to handle because subproblem (5) is in fact a min-
max (saddle point) problem (see the definition ofϕi in (3)). For-
tunately, by applying the minimax theorem [20, Proposition2.6.2]
and exploiting the strong convexity of (5) with respect toyi, one can
avoid solving the min-max problem (5) directly. As shown in [14],
subproblem (5) can be obtained in closed-form as follows

y
k
i = 1

2|Ni|

(

2
∑

j∈Ni
t
k−1
ij − 1

c

∑

j∈Ni
(uk−1

ij + v
k−1
ji )

+ 1
c
(Eix

k
i −

1
N
q)

)

, (9)

wherexk
i is given by an solution to the following quadratic program

x
k
i =argmin

xi

{

φi(xi)+
c

4|Ni|

∥

∥

1
c
(Eixi − 1

N
q)

− 1
c

∑

j∈Ni
(uk−1

ij + v
k−1
ji ) + 2

∑

j∈Ni
t
k−1
ij

∥

∥

2

2

}

. (10)

Note that subproblem (10) is a convex problem under Assumption
1(b). Moreover, subproblem (10) is easier to handle than (5)as stan-
dard convex solvers or simple algorithms can be directly applied.

Finally, by substituting (6) into (7)-(10) and by letting

p
k
i ,

∑

j∈Ni
(uk

ij + v
k
ji) ∀i ∈ V, (11)

for all k, the steps from (7) to (10) can be equivalently written as
(12), (13) and (14) in Algorithm 1.

It is worthwhile to note that, in step (14), each agenti has to ex-
changeyk

i with its neighbors at each iterationk. Given{yk−1
j }j∈Ni

at each iterationk, the updates ofxi in (12) andyi in (13) are inde-
pendent of other agents. Therefore, unlike the D-ADMM methods
in [12, 13], the DC-ADMM method in Algorithm 1 is fully paral-
lel. It has been shown in [14] that, under Assumption 1, the iterates
{xk

i }
N
i=1 in DC-ADMM are guaranteed convergent to an optimal

solution of(P).

4. PROPOSED RANDOMIZED DC-ADMM

The DC-ADMM method in Algorithm 1 has assumed that all agents
in the network are active and communications between the agents
are errorless at every iterationk. In this section, we develop an ran-
domized DC-ADMM method which is applicable to networks with
randomly ON/OFF agents and non-ideal communication links.Be-
fore presenting the proposed method, we should remark here that
this randomized approach is motivated by the recent work [16] which
considers a randomized ADMM method. However, the problem con-
sidered therein is different from our problem(P) and their analysis
results are not applicable to our randomized DC-ADMM methodto
be presented shortly.

We consider a random network as follows. At each iteration
(e.g., time epoch), each agent has a probability, sayαi ∈ (0, 1], to
be ON (active), and probability(1 − αi) to be OFF. In addition,
for each link(i, j) ∈ E , there is a probabilitypij ∈ (0, 1] that
agenti and agentj cannot successfully exchange messages due to,
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Algorithm 1 DC-ADMM for solving (P) [14]

1: Given initial variablesx(0)
i ∈ R

L, y(0)
i ∈ R

L andp(0)
i = 0 for

each agenti ∈ V. Setk = 1.
2: repeat
3: For all i ∈ V (in parallel),

x
k
i =arg min

xi

{

φi(xi) +
c

4|Ni|

∥

∥

1
c
(Eixi −

1
N
q)

− 1
c
p
k−1
i +

∑

j∈Ni
(yk−1

i + y
k−1
j )

∥

∥

2

2

}

, (12)

y
k
i = 1

2|Ni|

(
∑

j∈Ni
(yk−1

i + y
k−1
j )− 1

c
p
k−1
i

+ 1
c
(Eix

k
i −

1
N
q)

)

, (13)

p
k
i =p

k−1
i + c

∑

j∈Ni
(yk

i − y
k
j ). (14)

4: Setk ← k + 1.
5: until a predefined stopping criterion is satisfied.

e.g., deep fading. So, the probability that agenti and agentj are
both active and able to successfully exchange messages is given by
βij , αiαj(1− pij). If this happens, we say that link(i, j) ∈ E is
active at the iteration. For each iterationk, we letΩk ⊆ V be the set
of active agents and letΨk ⊆ {(i, j) ∈ E |i, j ∈ Ωk} be the set of
active edges.

Now let us recall the genuine DC-ADMM steps from (5) to (8).
Then, at each iterationk in the random network, only the active
agents perform local variable update. In particular, active agents
i ∈ Ωk update the variableyi following (5) (i.e., (9) and (10))
whereas others keepyi unchanged, i.e.,yk

i = y
k−1
i ∀i /∈ Ωk.

Since each active agenti ∈ Ωk can only receive messageyk
j from

neighbors in the set{j ∈ Ni | (i, j) ∈ Ψk}, agenti would update
{tij}j∈Ni

and{uij , vji}j∈Ni
as follows

t
k
ij =

{

yk
i +yk

j

2
if (i, j) ∈ Ψk,

t
k−1
ij , otherwise,

(15)

u
k
ij =

{

u
k−1
ij + c(yk

i − tkij) if (i, j) ∈ Ψk,

u
k−1
ij , otherwise,

(16)

v
k
ji =

{

v
k−1
ji + c(yk

i − t
k
ji) if (i, j) ∈ Ψk,

v
k−1
ji , otherwise.

(17)

As seen, only the variables corresponding to the active edges are
updated accordingly, otherwise, the variables remain unchanged1.
Note that, from (15), we still have

t
k
ij = t

k
ji ∀i, j, k. (18)

By (18) and by lettingpk
i ,

∑

j∈Ni
(uk

ij + vk
ji) ∀i ∈ V, (16) and

(17) can be written as

p
k
i = p

k−1
i + 2c

∑

j|(i,j)∈Ψk(y
k
i − tkij) ∀i ∈ V. (19)

Finally, we summarize the steps of the proposed randomized DC-
ADMM method in Algorithm 2.

1We have assumed that the agents are capable of detecting communication
errors, e.g., via error correcting coding techniques. Moreover, if agenti ∈

Ωk detects that an error occurs in the link from agentj ∈ Ωk , agenti would
treat(i, j) /∈ Ψk and further sends a signaling to agentj. Agentj will also
take(j, i) /∈ Ψk as it either receives the signaling from agenti or detects the
link error by itself.

Algorithm 2 Randomized DC-ADMM for solving(P)

1: Given initial variablesx0
i ∈ R

L, y0
i ∈ R

L, p0
i = 0 and

t0ij =
y0

i +y0

j

2
∀j ∈ Ni,

for each agenti ∈ V. Setk = 1.
2: repeat
3: For all i ∈ Ωk (in parallel),

x
k
i = arg min

xi

{

φi(xi) +
c

4|Ni|

∥

∥

1
c
(Eixi −

1
N
q)

− 1
c
p
k−1
i + 2

∑

j∈Ni
t
k−1
ij

∥

∥

2

2

}

, (20)

y
k
i = 1

2|Ni|

(

2
∑

j∈Ni
t
k−1
ij − 1

c
p
k−1
i

+ 1
c
(Eix

k
i −

1
N
q)

)

, (21)

t
k
ij =

{

yk
i +yk

j

2
if (i, j) ∈ Ψk,

t
k−1
ij , otherwise,

(22)

p
k
i = p

k−1
i + 2c

∑

j|(i,j)∈Ψk(y
k
i − t

k
ij); (23)

whereas for alli /∈ Ωk (in parallel)

x
k
i = x

k−1
i , yk

i = y
k−1
i ,pk

i = p
k−1
i ,

t
k
ij = t

k−1
ij ∀j ∈ Ni. (24)

4: Setk ← k + 1.
5: until a predefined stopping criterion is satisfied.

There are two key differences between the proposed randomized
DC-ADMM method and the original DC-ADMM method in Algo-
rithm 1. Firstly, in addition to(xk

i ,y
k
i ,p

k
i ), each agenti in ran-

domized DC-ADMM also requires to keep variables{tij , j ∈ Ni}
explicitly. Secondly, randomized DC-ADMM takes into account
possibly inactive agents and inactive communication linksbecause
variables(xk

i ,y
k
i ,p

k
i ) are updated only ifi ∈ Ωk and variables

(tkij , {u
k
ij ,v

k
ji}) are updated only if(i, j) ∈ Ψk. Since the random-

ized DC-ADMM method coincides with the DC-ADMM method in
Algorithm 1 whenΩk = V andΨk = E for all k, the former is a
generalization of the latter to the random networks.

Interestingly, the randomized DC-ADMM method in Algorithm
2 is still provably convergent, as stated in the following theorem.

Theorem 1 Suppose that Assumption 1 holds. Besides, assume that
each agent i has an active probability αi ∈ (0, 1] and each (i, j) ∈
E has a link failure probability pij ∈ (0, 1]. Let ({x⋆

i }
N
i=1,y

⋆) be
a pair of optimal primal-dual solution of (P) , and let {u⋆

ij} be the
optimal dual variables of problem (4). Moreover, let

x̄
k
i ,

1

k

k−1
∑

ℓ=0

x
ℓ
i ∀i ∈ V, (25)

where {xk
i }

N
i=1 are generated by Algorithm 2. Then, it holds that

∣

∣

∣

∣

E

[ N
∑

i=1

φi(x̄
k
i )−

N
∑

i=1

φi(x
⋆
i )

]∣

∣

∣

∣

+

∥

∥

∥

∥

E

[ N
∑

i=1

Eix̄
k
i − q

]∥

∥

∥

∥

2

≤
(1+‖y⋆‖2)C1+C2

k
,
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where C1 and C2 are some positive constants that depend on {αi},
{βij}, y⋆ and {u⋆

ij}

Due to space limitation, the proof is omitted here. Theorem 1implies
that the proposed randomized DC-ADMM method can converge to
an optimal solution of(P) in the mean, with aO(1/k) worst-case
convergence rate.

5. NUMERICAL RESULTS

In this section, we examine the numerical performances of the pro-
posed randomized DC-ADMM method (Algorithm 2), by consider-
ing the following sparse logistic regression (LR) problem [14,21]

min
xi∈X ,

i=1,...,N

{ M
∑

m=1

log
(

1 + exp(−bm

N
∑

i=1

e
T
iqxi)

)

+λ
N
∑

i=1

‖xi‖1

}

,

(26)

whereb1, . . . , bM are the binary labels of theM training data,xi ∈
R

L is a local regression variable andEi = [ei1, . . . ,eiM ]T ∈
R

M×L is a column-partitioned training data matrix owned by each
agenti, for all i ∈ V. By introducing a slack variablez = [z1, . . . , zM ]T ,
∑N

i=1 Eixi, the LR problem can be reformulated as

min
x1,...,xN∈X ,

z∈R
M

{ M
∑

m=1

log
(

1 + exp(−bmzm)
)

+ λ
N
∑

i=1

‖xi‖1

}

s.t.
∑N

i=1 Eixi − z = 0, (27)

which is an instance of(P) and Algorithm 2 can be applied.
The training dataEi’s and labelsbm’s were generated following

the same approach as in [14] based on the images D24 and D68 of
the Brodatz data set (http://www.ux.uis.no/ ˜ tranden/
brodatz.html ). The feasible setX in (27) was set toX =
{x ∈ R

L | |xi| ≤ 10 ∀i}. To implement Algorithm 2, we employed
the fast iterative shrinkage-thresholding algorithm (FISTA) [22] to
solve subproblem (20). The stopping condition of FISTA is based
on the proximal gradient residue which was set to10−5. The stop-
ping criterion of Algorithms 2 is based on measuring the solution
accuracyacc = (obj(xk)− obj⋆)/obj⋆, whereobj(xk) denotes the
objective value of (26) at pointxk = (xk

1 , . . . ,x
k
N ), andobj⋆ is the

optimal value of (26) which was obtained by using FISTA. The con-
nected graphG was randomly generated following the same method
as in [23]. For simplicity, the active probabilities of agents are set
the sameα , α1 = · · · = αN and the link failure probabilities of
all edges are also set the samepe , pij ∀(i, j) ∈ E .

In Fig. 1, we present the convergence curves of the proposed
randomized DC-ADMM method, for an example withN = 50,
L = 200, M = 100 andλ = 0.05. The penalty parameterc was
set to0.05, and the stopping condition was set toacc < 10−4. In
particular, Fig. 1(a) displays the convergence curves of randomized
DC-ADMM for α = 1 and for various values ofpe. Note that the
curve ofα = 1 andpe = 0 corresponds to the original DC-ADMM
method (Algorithm 1). One can see from this figure that randomized
DC-ADMM converges consistently, although the random link fail-
ure does slow down the convergence speed. Specifically, we observe
that the number of iterations required to reachacc < 10−4 with
pe = 0.5 is roughly doubled compared to that withpe = 0. This
is reasonable as, withpe = 0.5, the probability for two agents ex-
changing messages successfully (i.e.,βij = 1− pe) is reduced half.
So the network requires a doubled number of iterations to reach the
same solution accuracy. Fig. 1(b) shows the results of randomized
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Fig. 1. Convergence curves of randomized DC-ADMM.

DC-ADMM for pe = 0 and for various values ofα. Similarly,
one can observe that randomized DC-ADMM still converges consis-
tently and the convergence speed is slowed due to randomly inactive
agents. One can observe that, withα = 0.5, the number of itera-
tions required to reachacc < 10−4 is around four times of that for
α = 1. This is because the probability for two agents being ON si-
multaneously and exchange message successfully (i.e.,βij = α2) is
decreased to one fourth. Fig. 1(b) also shows the convergence curve
of randomized DC-ADMM forα = 0.5 andpe = 0.5. One can see
that randomized DC-ADMM still converges even in such a severe
scenario.

6. CONCLUSIONS

We have proposed in this paper the randomized DC-ADMM method
(Algorithm 2) for solving (P) over non-ideal networks with ran-
domly ON/OFF agents and imperfect communication links. We have
shown that the proposed randomized method converges to an optimal
solution of(P) in the mean with a worst-caseO(1/k) convergence
rate. The simulation results have shown that the proposed random-
ized DC-ADMM method is robust against these non-ideal effects
and always converges.
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