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ABSTRACT

Recently, the alternating direction method of multipliépADMM)
has been used for distributed consensus optimization asldoisn

to converge faster than conventional approaches basedsetsus
subgradient. In this paper, we consider a convex optintmgirob-
lem with a linearly coupled equality constraint and emplogtuzl
consensus ADMM (DC-ADMM) method for solving the problem
in a fully distributed fashion. In particular, by considegia non-
ideal network where the agents can be ON and OFF randomly al
the communications among agents can fail probabilisticaié pro-
pose a randomized DC-ADMM method that is robust againsethes
non-ideal effects. Moreover, we show that the proposedamnd
ized method is provably convergent to an optimal soluticeh laas a
worst-case?(1/k) convergence rate, whefeis the iteration num-
ber. Simulation results are presented to examine the pahctnver-
gence behavior of the proposed method in the presence admand
ON/OFF agents and non-ideal communication links.

Index Terms— Distributed consensus optimization, multi-agent
network, ADMM, randomized optimization

1. INTRODUCTION

Multi-agent distributed optimization [1] has drawn sigoé#it atten-
tion in recent years due to the need for large-scale sigoakssing
and machine learning tasks over data networks [2]. In pdaic
the distributed agents (e.g., data servers) may collakehasolve a
data regression or learning problem by using only localljected

data since moving these data over the network may not be iitlwaufj

feasible, especially when the data size is extremely laegg,(big
data). Many of the signal processing and machine learniolglems
can be formulated as the following optimization problem

min
x n ERL

(P) > i) sit.

@x .
1 i=1

N

Z Eixi =g, (1)
""" i=1
whereg; : RY — R U {oo} is a local cost function (possibly nons-
mooth and with extended values) associated with agent € R”
is the local regression/decision variabl, € R**~ contains the
locally observed data ang € R is a parametric vector which
is assumed to be known by all agents. ApplicationgR)finclude
the basis pursuit (BP), logistic regression and LASSO proisl in
machine learning [3], the network flow control problem [4fart
grid control problem [5] and interference management pnobin
communications [6], to name a few. In the context of multdiaiy
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optimization, it is assumed that the agents can accessdakifdor-
mation (i.e.,¢;, E; andq) and exchange messages with neighbors
only, but they want to globally solve the coupled probl@®).

Various distributed optimization methods have been prepas
the literature for solving problems with the same forngRs For ex-
ample, the consensus-based primal-dual subgradient deeffip8]
can be employed to hand(®). These types of methods are simple
and can handle a wide range of application problems, butdhe c
vprgence rate is slow in general. Recently, the alternatiregtion
method of multipliers (ADMM) [9, 10] has been used for fass-di
tributed consensus optimization [11-18]. Specificallg, work [11]
proposed a consensus ADMM (C-ADMM) method for solving a dis-
tributed LASSO problem. The works in [12, 13] proposed saver
distributed ADMM (D-ADMM) methods for solving problems it
the same form a@°). However, the D-ADMM methods require each
agent either to update the variables sequentially (not ralled) or
to solve a min-max (saddle point) subproblem at each itarae-
sides, it is also assumed that certain coloring scheme ilblato
the network graph. To overcome these issues, in [14], theoasit
proposed a distributed optimization method, called duakeasus
ADMM (DC-ADMM), which solves (P) in a fully parallel manner
over arbitrary networks as long as the network graph is cctede

Recently, there is an increasing interest in asynchrondss d
tributed ADMM methods; see [16—18]. While the methods in,[17
18] require certain restrictive assumption on the netwogotogy,
the work [16] proposed a randomized ADMM scheme that works
for any connected network graph. In this paper, we adoptahe r
omized strategy in [16] and propose a randomized DC-ADMM
method that can solv@) globally even in the presence of randomly
ON/OFF agents and imperfect communication links. In paldic
only agents that are active at the iteration update the lcanddble
and exchange messages with neighboring active agents. &\e sh
that the proposed randomized DC-ADMM method converges to an
optimal solution of(P) in the mean and has a worst-caSél/k)
convergence rate, whefeis the iteration number. The presented
simulation results show that the proposed randomized rdethm-
bust and converges consistently in the considered nomeeaork
scenarios.

2. NETWORK MODEL AND ASSUMPTIONS

Assume that there ar®’ agents in the network and that the net-
work is modeled as a undirected gragh= {V,£}. HereV =
{1,..., N}isthe set of agents arftlis the set of edges, i.€j, j) €

£ if and only if agenti and ageny are neighbors and can commu-
nicate with each other. For each agéntve define\; = {j € V |
(4,7) € £} as the index subset of neighbors.
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To develop the proposed methods, we make the following as-

sumptions on the network and probléR).

Assumption 1 (a) The undirected graph G is connected; (b) ¢;'s
are proper closed convex functions; thereis no duality gap between
(P) and its Lagrange dual (i.e., Sater condition); moreover, the min-
imum of (P) is attained and so isits optimal dual value.

Assumption 1(a) implies that neighbor-wise variable cosse can
infer global consensus in the network. Hence, consensumiapt
tion can be achieved via neighbor-wise message exchangeAsil
sumption 1(b) implies thgP) is a convex optimization problem and
both the primal and dual optimal solutions are achievable.

3. REVIEW OF DC-ADMM

DC-ADMM is recently proposed in [14] for solvinP) in a fully
distributed manner.

To illustrate this method, let us consider the followinglgem which
is equivalent to the Lagrange dual problen{®j

N
min 2
zig, > )

wi(y) + 1y q
( )

wherey € RM denotes the Lagrange dual variable associated with

the linear equality constrairEf’:1 E;x; = qin (1). In (2), func-
tionsy; (y) are given by

¢i(y) érr;ax{ — ¢i(xi) 7yTEiazi}w S )
In the standard dual decomposition method [19], the suli@nabin
(3) can be solved by the agents individually provided that given.
However, the dual variablg is not distributed.

To achieve a fully distributed algorithm, one allows eacbrig
to have a local copy of the variablg denoted byy;, while enforc-

ing the distributedy;’s to be the same across the network through

neighbor-wise consensus constraints. This is equivatergformu-
lating (2) as the following problem

N
. 1 7
D o CTORS 27) BEC
{ti;} =1
sty =ti; Vj NG, 1€V, (4b)
y; = tij VjeM, eV, (4C)

The idea of DC-ADMM is based on the La-
grange dual optimization and the consensus ADMM method. [11]

k

’U.”_’U, +C(yz —tZ)VgGM,zGV,
k

vii=vl eyl — ) ViEN, i€V,

@)
®)

whereu;; € RM, v;; € RM are the Lagrange dual variables asso-
ciated with each of the constraints in (4b) and (4c), resypelgt and
¢ > 0 is a penalty parameter. Equations (5) and (6) involve updat-
ing the primal variables of (4) in a one-round Gauss-Seilghibn;
while (7) and (8) update the dual variables by subgradiecgras
Notice that subproblem (5) is a strongly convex problem. How
ever, it is not easy to handle because subproblem (5) is irafadn-
max (saddle point) problem (see the definitiongfin (3)). For-
tunately, by applying the minimax theorem [20, Propositib.2]
and exploiting the strong convexity of (5) with respecytoone can
avoid solving the min-max problem (5) directly. As shown 1],
subproblem (5) can be obtained in closed-form as follows

(ZZ]EN tk ! < E]EN(
+ (Bt - %a)),

k
Y = o T

©)

wherez?! is given by an solution to the following quadratic program

. C
mf=argn;11n{¢i(mi)+m\|%(Ezmz - %9

112
-z Z]e/\f (u +U )+22jex\f¢ tﬁj 1”2}' (10)

Note that subproblem (10) is a convex problem under Assumpti
1(b). Moreover, subproblem (10) is easier to handle thaagSftan-
dard convex solvers or simple algorithms can be directljiegp

Finally, by substituting (6) into (7)-(10) and by letting

P A Y o (Ul +uf) Vie, (11)

for all k, the steps from (7) to (10) can be equivalently written as
(12), (13) and (14) in Algorithm 1.

It is worthwhile to note that, in step (14), each agéehas to ex-
changey}’ with its neighbors at each iteratién Given{y* ' } e,
at each iteratiort;, the updates aof;; in (12) andy; in (13) are inde-
pendent of other agents. Therefore, unlike the D-ADMM metho
in [12, 13], the DC-ADMM method in Algorithm 1 is fully paral-
lel. It has been shown in [14] that, under Assumption 1, temies
{zF}N.| in DC-ADMM are guaranteed convergent to an optimal
solution of(P).

4. PROPOSED RANDOMIZED DC-ADMM
The DC-ADMM method in Algorithm 1 has assumed that all agents

where{t;;} are slack variables. Constraints (4a) and (4b) ensure th# the network are active and communications between thatsge

neighbor-wise consensus, i.9;,= y; Vj € N;, i € V. Under As-
sumption 1(a), neighbor-wise consensus is equivalente@kbbal
consensus; as a result, (4) is equivalent to (2). Next, letugloy
ADMM [9] to solve (4). It can be shown that [14] the ADMM steps
for solving (4) are given by: for iteratioh = 1,2, - - -

yi = argmin {%(yz Ny7 Fa+ Y (uy 't +oi )Ty
JEN;
+e Y llui— tig*n%} VieVv, (5)
JEN;
k k
i TY; . )
th=th =T vjeni iev, ®
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are errorless at every iteratidn In this section, we develop an ran-
domized DC-ADMM method which is applicable to networks with
randomly ON/OFF agents and non-ideal communication lifdes.
fore presenting the proposed method, we should remark hate t
this randomized approach is motivated by the recent workibéch
considers arandomized ADMM method. However, the problem co
sidered therein is different from our problgiR) and their analysis
results are not applicable to our randomized DC-ADMM mettwd
be presented shortly.

We consider a random network as follows. At each iteration
(e.g., time epoch), each agent has a probability,csay (0, 1], to
be ON (active), and probabilityl — «;) to be OFF. In addition,
for each link (¢, j) € &, there is a probability;; € (0,1] that
agenti; and ageny cannot successfully exchange messages due to,



Algorithm 1 DC-ADMM for solving (P) [14] Algorithm 2 Randomized DC-ADMM for solvingP)

1: Given initial variablesz!” € R”, 3 € R andp!” = 0 for 1: Giveninitial variablesz? € R”, y{ € R, p! = 0 and
each agent € V. Setk = 1. o o
2: repeat 1), = 2% vje N,

3. Foralli € V (in parallel),
for each agent € V. Setk = 1.

K _ . . B 2: repeat
®i =arg min {(b’(mz) 4\/\/’| (HEE ) 3:  Foralli € QF (in parallel),
1 k 1 2
- 12 . c
e T H2} (12) z; = arg min {¢i(mz‘)+m”%(Eimi*%Q)
k k—1 k—1
Yi :m(zge/\f (y! +yj ) — <D} Sy t’“*H?} 20)
+ F(Elmz - NQ))a (13) JEN: T 2f
— : k __ k—1 k—1
pi =P e X en, (U — y)). 14 i = o 2 e by P
4  Setk <+ k+ 1. + 1Bz - %q), (21
5: until a predefined stopping criterion is satisfied. o Yi ;ryz if (i,5) € U*, 22)
R otherwis
i €
E_ k-1 k k.
e.g., deep fading. So, the probability that ageand agentj are Pi =P 203506 e (U0 — 85); (23)

both active and able to successfully exchange messageeis loy .

Bi; £ aia (1 — pij). If this happens, we say that link, j) € & is whereas for alt ¢ 2" (in parallel)

active at the iteration. For each iteratibnwe letQ* C V be the set k k=1 k _ k- k—1

of active agents and l&"* C {(i,j) € & |i,j € Q*} be the set of e =iyl =y e =R

active edges. ty =t VjEN. (24)
Now let us recall the genuine DC-ADMM steps from (5) to (8).

Then, at each iteratiok in the random network, only the active 4:  Setk < k+1.

agents perform local variable update. In particular, actigents ~ 5: until a predefined stopping criterion is satisfied.

i € QF update the variabley; following (5) (i.e., (9) and (10))

whereas others keep; unchanged, i.e.y’ = k Lvi ¢ QF,
k
S|r.10e each active agente Q can only ]:ecelve messagé‘ from There are two key differences between the proposed rangdmiz
neighbors in the sefj € \; | (i,7) € "}, agenti would update  DC-ADMM method and the original DC-ADMM method in Algo-
{tij}ien, and{ui;, vji}jen;, as follows rithm 1. Firstly, in addition to(z?, y¥, p¥), each agent in ran-
.k domized DC-ADMM also requires to keep variabligs;, j € N;}
o % if (4,5) € Uk, (15) explicitly. Secondly, randomized DC-ADMM takes into acobu
B t’?jfl otherwise possibly inactive agents and inactive communication linksause
ij . . % .
W g e(yE —5) i (i) € U varlables( “yz k p¥) are updated only if ke Q" and variables
ufj = { i @ i ) ’ (16) (t ,],{u”, ]l}) are updated only ifi, j) € ¥". Since the random-
uzj ) otherwise ized DC-ADMM method coincides with the DC-ADMM method in
eyl — k) if (4,4) € O, Algorithm 1 when2* = V and¥* = & for all k, the former is a
o}, % otherwise (17)  generalization of the latter to the random networks.

Interestingly, the randomized DC-ADMM method in Algorithm
As seen, only the variables corresponding to the activesedge 2 is still provably convergent, as stated in the followingdarem.
updated accordingly, otherwise, the variables remain amgéd.

Note that, from (15), we still have Theorem 1 Suppose that Assumption 1 holds. Besides, assume that

each agent 7 has an active probability «; € (0, 1] and each (i,7) €
t,’;], — t’fz Vi, j, k. (18) & hasalink failure probability p;; € (0,1]. Let ({z]};Z N, y*) be
apair of optimal primal-dual solution of (P) , and let {};} be the
By (18) and by lettingp’ £ e, (uf; +v%) Vi e v, (16) and  optimal dual variables of problem (4). Moreover, let
(17) can be written as

k—1
_ 1
pl=p/ " +2 X6, ])e\pk( ti)VieV. (19) @ & % @) Vi€V, (29)
=0
Finally, we summarize the steps of the proposed randomized D
ADMM method in Algorithm 2. where {2}, are generated by Algorithm 2. Then, it holds that

1We have assumed that the agents are capable of detectingurooation N N N
errors, e.g., via error correcting coding techniques. Meee if agenti € E[ ; k) — i(xr ] + ]E{ Eii:’-“ _ }
QF detects that an error occurs in the link from aggert Q, agenti would Z ¢:(&7) Z ¢:(xi) Z i
treat(i, j) ¢ ¥* and further sends a signaling to aggntAgent; will also .
take(j,7) ¢ W as it either receives the signaling from ageot detects the < (I+[[y*l2)C1+Co
link error by itself. - k ’

2
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where C; and C> are some positive constants that depend on {« },
{Bis}, y* and {uj;}

Due to space limitation, the proof is omitted here. Theoremglies
that the proposed randomized DC-ADMM method can converge t
an optimal solution ofP) in the mean, with a@>(1/k) worst-case
convergence rate.

5. NUMERICAL RESULTS

In this section, we examine the numerical performanceseptb-
posed randomized DC-ADMM method (Algorithm 2), by consider
ing the following sparse logistic regression (LR) probleid,[21]

M

N N
{ log (1 -‘rexp(—bmzez‘qui))""}\Z ||w1||1},
1 im1 im1

min
x; eEX,
i=1,...,N =~ m=
(26)
whereby, ..., by are the binary labels of th&f training datag; €

R” is a local regression variable afg, = [eir,...,einm]” €
RM*L js a column-partitioned training data matrix owned by each

agent, foralli € V. By introducing a slack variable = [z1, ..., za]7
SN | Eiz;, the LR problem can be reformulated as
M N
i log (1 —bmZm A i
o {300 (14 exp(-0z) 43 el
zE]RM m=1 =1
st. YN Eiz;—z=0, (27)

which is an instance dP) and Algorithm 2 can be applied.

The training dat&;’s and label®,,’s were generated following
the same approach as in [14] based on the images D24 and D68
the Brodatz data sehf{tp://www.ux.uis.no/ ~tranden/
brodatz.html ). The feasible seft in (27) was set tot
{x € R® | |z;| < 10Vi}. Toimplement Algorithm 2, we employed
the fast iterative shrinkage-thresholding algorithm (FAB[22] to
solve subproblem (20). The stopping condition of FISTA isdzh
on the proximal gradient residue which was set@®. The stop-
ping criterion of Algorithms 2 is based on measuring the Sofu
accuracyacc = (obj(z"*) — obj*)/obj*, whereobj(z*) denotes the
objective value of (26) at point® = (2, ..., x%), andobj* is the
optimal value of (26) which was obtained by using FISTA. Tha-c

10 T
_azl,pe:O
. - -cx:l,pezo.l
10 ¢ ‘= im10=1,p,=0.3 }
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Fig. 1. Convergence curves of randomized DC-ADMM.

DC-ADMM for p. 0 and for various values af. Similarly,

nected graplyy was randomly generated following the same methodone can observe that randomized DC-ADMM still convergesisen

as in [23]. For simplicity, the active probabilities of agemre set
the samex £ a1 = --- = ay and the link failure probabilities of
all edges are also set the same= p;; V(i,5) € €.

tently and the convergence speed is slowed due to randoadjive
agents. One can observe that, with= 0.5, the number of itera-
tions required to reachcc < 10~* is around four times of that for

In Fig. 1, we present the convergence curves of the proposed = 1. This is because the probability for two agents being ON si-

randomized DC-ADMM method, for an example wiffi = 50,
L = 200, M = 100 and\ = 0.05. The penalty parameterwas
set t00.05, and the stopping condition was setaec < 107, In
particular, Fig. 1(a) displays the convergence curvesmdoaized
DC-ADMM for o = 1 and for various values qgf.. Note that the
curve ofa = 1 andp. = 0 corresponds to the original DC-ADMM
method (Algorithm 1). One can see from this figure that randech
DC-ADMM converges consistently, although the random liak-f
ure does slow down the convergence speed. Specifically, senad
that the number of iterations required to reach < 10~* with
pe = 0.5 is roughly doubled compared to that with = 0. This
is reasonable as, with. = 0.5, the probability for two agents ex-
changing messages successfully (%;,= 1 — p.) is reduced half.
So the network requires a doubled number of iterations tohréae
same solution accuracy. Fig. 1(b) shows the results of rammsu
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multaneously and exchange message successfullydjes o?) is
decreased to one fourth. Fig. 1(b) also shows the conveeganee

of randomized DC-ADMM fora = 0.5 andp. = 0.5. One can see
that randomized DC-ADMM still converges even in such a sever
scenario.

6. CONCLUSIONS

We have proposed in this paper the randomized DC-ADMM method
(Algorithm 2) for solving (P) over non-ideal networks with ran-
domly ON/OFF agents and imperfect communication links. \Afeh
shown that the proposed randomized method converges tdiamebp
solution of (P) in the mean with a worst-cas@(1/k) convergence
rate. The simulation results have shown that the proposetbra-
ized DC-ADMM method is robust against these non-ideal ¢ffec
and always converges.
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