
EFFICIENT CONSTRUCTION OF DICTIONARIES FOR KERNEL ADAPTIVE FILTERING
IN A DYNAMIC ENVIRONMENT

Taichi Ishida and Toshihisa Tanaka

Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology
2–14–16 Nakacho, Koganei-shi, Tokyo, 184–8588, Japan

Email: tishida@sip.tuat.ac.jp, tanakat@cc.tuat.ac.jp

ABSTRACT
One of the major challenges in kernel adaptive filtering is how
to construct an efficient dictionary of observed input signals.
In this paper, we propose novel dictionary adaptation rules for
kernel adaptive filtering. The first algorithm can efficiently
“move” elements of the dictionary to increase the approxima-
tion performance. The second algorithm mainly focuses on a
nonstationary system, which can yield the increase of the dic-
tionary size. The proposed method can eliminate unnecessary
elements in the dictionary. Numerical examples support the
efficacy of the proposed methods.

Index Terms— nonlinear adaptive filtering, kernel meth-
ods, reproducing kernel Hilbert space, dictionary learning

1. INTRODUCTION

Filters that approximate or track unknown systems that
change from time to time are known as adaptive filters [1].
Adaptive filtering is a challenging technique in a wide range
of signal processing and machine learning applications such
as system identification, noise or echo cancellation, and sig-
nal prediction [2, 3]. The input-output relation of adaptive
filters can be constructed by linear or nonlinear models. Most
traditional methods assume that unknown systems are linear.
However, there are many situations that require nonlinear
adaptive filters, since many systems in the real environment
are modeled nonlinear. To this end, a number of research re-
sults regarding nonlinear adaptive filters have been reported.
A well-known one is the adaptive Volterra filter [4–6]. In
recent years, the efficiency of kernel adaptive filters has also
become known effective [7–17].

The kernel adaptive filter is a nonlinear adaptive filter that
exploits kernel methods, which are one of the techniques to
construct effective nonlinear systems with a reproducing ker-
nel Hilbert space (RKHS) induced from a positive definite
kernel [18]. The filter is an element in the RKHS and output
of the system is modeled as the inner product of the filter with
a nonlinear map of the input signal [7].
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Since a kernel adaptive filter is represented by the lin-
ear sum of kernels corresponding to observed input signals,
the adaptive algorithm is intended to estimate coupling coef-
ficients of kernels. Hence, as the number of observed input
signals increases, the computational load increases due to lin-
early growing dimension of the subspace. Furthermore, the
filter will be prone to overadaptation (or overfitting) due to
increasing model dimension. Therefore, a reduction method
of the number of kernels to design the filter has been proposed
by constructing a set of input signals called a dictionary, us-
ing a coherence threshold [11]. This method judges whether
to add the kernel corresponding to an observed input signal to
the dictionary at each time instant. The observed input signal
similar to a signal in the dictionary is discarded. This method
makes it possible to prevent overadaptation and to reduce the
computation time in updating the filter. In addition to the
coherence-based method, reduction methods using approxi-
mate linear dependency (ALD) [12] and surprise criteria [19]
are proposed. Moreover, l1 regularization based methods have
been proposed to construct a dictionary [8, 20–22].

The difficulty of constructing an efficient dictionary is that
some of the observed signals can deteriorate performance
in adaptation. A recently proposed solution is to “move”
observed samples in the dictionary to increase the perfor-
mance [23, 24]. In this method, elements in the dictionary
constructed by coherence sparsification are updated to mini-
mize the mean square error (MSE). Although the dictionary
adaptation is an efficient strategy for increasing performance
of kernel adaptive filtering, the dictionary cannot still catch
up with the change of unknown systems. Moreover, the
adjustment of the step size at each time instance in the dic-
tionary adaptation has been proposed to prevent an increase
of similar elements after the update [23, 24], however, it has
inferior approximation.

In this paper, we propose two novel dictionary adapta-
tion algorithms. The first algorithm is a modified version
of [23, 24] that has superior approximation in the adjustment
of the step size. The second algorithm is a novel dictionary
adaptation algorithm for nonstationary systems. In the pro-
posed method, we exploit a novel method for preventing the
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increase of similar elements, which removes updated dictio-
nary elements that do not satisfy a coherence criteria. Fur-
thermore, we apply the dictionary adaptation to a coherence-
based dictionary with l1 sparsity [22]. As a result, the pro-
posed method can “move” and adaptively “eliminate” dictio-
nary elements. Numerical examples support the efficacy of
the proposed methods.

2. KERNEL ADAPTIVE FILTERS AND
DICTIONARY CONSTRUCTION

2.1. Kernel Nonlinear Filtering Model

Let U ⊂ RL, u ∈ U, and d ∈ R denote the input space, the
input signal, and the desired signal respectively. Also, κ(·, ·) :
U ×U → R andH denote the kernel and the corresponding
RKHS. In kernel adaptive filtering, suppose that the output of
the system is modeled as the inner product f (u) = 〈Ω, φ(u)〉
of the filter Ω ∈ H with a nonlinear mapping of an input
signal φ(u) ∈ H . We consider the problem of adaptively
estimating filter Ω. Figure 1 shows a conceptual diagram of
the kernel adaptive filter. By representer theorem [11], Ω at
time instant n can be written as

Ωn =
∑
j∈Jn

h j,nκ(·,u j), (1)

where h j,n ∈ R is a weight of the kernel. From this, it is
seen that estimating Ωn is essentially equivalent to estimating
h j,n ∈ R. Here, {u j} j∈Jn is called a dictionary. Define the
index set of dictionary elements and the dictionary size as
Jn := { j(n)

1 , j(n)
2 , . . . , j(n)

rn } ⊂ {0, 1, . . . , n − 1} and rn = |Jn|
respectively. The filter output is represented as

yn = 〈φ(un),Ωn〉 =
∑
j∈Jn

h j,nκ(un,u j) = h>n κn, (2)

where
hn := [h j(n)

1 ,n
, h j(n)

2 ,n
, . . . , h j(n)

rn ,n
]> ∈ Rrn , (3)

κn := [κ(u j(n)
1
,un), κ(u j(n)

2
,un), . . . , κ(u j(n)

rn
,un)]> ∈ Rrn . (4)

2.2. Kernel NLMS With Coherence Criteria

It is crucial to reduce the number of samples for representing
Ωn in (1) without deteriorating the performance in adaptation.
In the following, we review a well-known dictionary update
method based on the coherence criteria for kernel normalized
least square (KNLMS) algorithm [11].

If the initial value of weight vector is h0 := 0 and the
coherence threshold [11] is δ > 0, the update rule of KNLMS
is then given as follows:

1. If max
j∈Jn

|κ(un,u j)| > δ, then Jn+1 = Jn and

hn+1 = hn +
µ

ρ + ‖κn‖2
(dn − h>n κn)κn, (5)

Fig. 1. Conceptual diagram of kernel adaptive filters

2. If max
j∈Jn

|κ(un,u j)| ≤ δ, then Jn+1 = Jn ∪ {n} and

hn+1 = h̄n +
µ

ρ + ‖κ̄n‖2
(dn − h̄>n κ̄n)κ̄n, (6)

where µ and ρ are a step size parameter and a stabilization
parameter respectively. Besides, κ̄n := [κ>n , κ(un,un)]> and
h̄n := [h>n , 0]>. Namely, this rule with the coherence thresh-
old judges whether to add the observed input signal to the
dictionary at each time instant. The observed input signal
is added to the dictionary if necessary, or discarded if not
needed. Consequently, the filter is an element in the subspace
that is spanned by the dictionary.

2.3. Dictionary Adaptation

The dictionary constructed in the KNLMS algorithm is a set
of observed input signals selected by a coherence threshold.
Hence, adaptive performance deteriorates if suitable signals
to represent filters cannot be observed. In [23,24], dictionary
adaptation is proposed. This is summarized as follows:

The underlying idea is to update elements of the dictio-
nary to minimize MSE at time instance n:

e2
n = [dn − yn]2 =

dn −
∑
j∈Jn

h j,nκ(un,u j)

2 . (7)

For the Gaussian kernel given as

κ(un,u j) = exp(−ζ‖un − u j‖2), (8)

(7) can be rewritten as

e2
n =

dn −
∑
j∈Jn

h j,n exp(−ζ‖un − u j‖2)

2 . (9)

By using LMS algorithm [1], the dictionary at n {u j} j∈Jn is
updated as follows:

u j,n+1 = u j,n − ηng j,n, (10)

g j,n = −2enh j,n∇u j exp(−ζ‖un − u j,n‖2), (11)
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where ηn is a step size, which should be chosen such that up-
dated dictionary elements u j,n+1 satisfy the coherence condi-
tion, that is,

|κ(ui,n+1,u j,n+1)| ≤ δ. (∀ui,n+1,∀u j,n+1, i , j) (12)

First, the condition (12) is rewritten as

|κ(∆u, ηn∆g)| ≤ δ, (∀ui,n+1,∀u j,n+1, i , j) (13)

where ∆u = ui,n−u j,n and ∆g = gi,n−g j,n. Since it is difficult
to analytically find ηn that satisfies (13), in [23, 24], a Taylor
series expansion around ηn ∼ 0 is applied to the left hand
side1, so that ηn is adjusted so that ηn is included in intervals
(−∞, ηn−] ∪ [ηn+,∞), where

ηn± =
ζ∆u>∆ge−ζ‖∆u‖

2 ±
√

D
ζ‖∆g‖2e−ζ‖∆u‖2

, (14)

D =
(
ζ∆u>∆ge−ζ‖∆u‖

2)2 − 2ζ‖∆g‖2e−ζ‖∆u‖
2
(δ − e−ζ‖∆u‖

2
).

(15)
We name this method for KNLMS dictionary adaptation for
KNLMS (AKNLMS).

3. DICTIONARY ADAPTATION FOR KNLMS WITH
l1 REGULARIZATION

Although the dictionary adaptation is an efficient strategy for
increasing performance of kernel adaptive filtering, the dic-
tionary cannot still catch up with the change of unknown sys-
tems. Besides, there is a doubt on obtaining the step size in
(10) with a Taylor expansion. In the following, we construct
two types of KNLMS algorithm.

3.1. Modified Dictionary Adaptation

Although a Taylor series expansion around ηn ∼ 0 is applied
to (13), this is indeed not the center of the kernel. We suggest
that the equation (13) should be approximated with a Tay-
lor series around ηn ∼ ∆u

>∆g
∆g>∆g (around the center of Gaussian

kernels). When the dimension of input signal is L = 1, the
approximated condition is written as

−1 + ζ(∆u − ∆gηn)2 + δ ≥ 0. (∀ui,n+1,∀u j,n+1, i , j) (16)

Since this is rewritten as

(ζ∆g2)η2
n − (2ζ∆u∆g)ηn + (δ − 1 + ζ∆u2) ≥ 0, (17)

ηn is adjusted in intervals (−∞, ηn−] ∪ [ηn+,∞),

ηn± = β
ζ∆u∆g ±

√
(ζ∆u∆g)2 − ζ∆g2(δ − 1 + ζ∆u2)

ζ∆g2 , (18)

where β is a correction parameter of the approximation. β
should be empirically determined, but it needs to be small
enough (β � 1). We name this algorithm for KNLMS modi-
fied dictionary adaption for KNLMS (MAKNLMS).

1This approximation could be incorrectly calculated. We discuss this is-
sue in Section 4.

3.2. l1-regularized KNLMS With Dictionary Adaptation

Another approach is to jointly update and eliminate elements
in the dictionary. In the proposed method, we apply dictio-
nary adaptation to KNLMS with l1 regularization [22]. In the
dictionary adaption, we exploit a novel method to satisfy co-
herence condition for nonstationary systems.

The cost function of KNLMS is added an l1 regularization
term in order to effectively adapt nonstationary systems. The
cost function is written as follows:

Θn := |dn − h>n κn|2 + λ‖hn‖1, (19)

where λ is a regularization parameter. It is not possible to ap-
ply the stochastic gradient approach to the cost function since
the l1 norm is nonsmooth. However, since Θn is a convex
function, we can apply the forward-backward splitting [25].
The update rule is then given as follows:

1. If max
j∈Jn

|κ(un,u j)| > δ, then Jn+1 = Jn and

hn+1 = proxµλ‖hn‖1

[
hn +

µ(dn − h>n κn)κn

ρ + ‖κn‖2

]
, (20)

2. If max
j∈Jn

|κ(un,u j)| ≤ δ, then Jn+1 = Jn ∪ {n} and

hn+1 = proxµλ‖hn‖1

[
h̄n +

µ(dn − h̄>n κ̄n)κ̄n

ρ + ‖κ̄n‖2

]
, (21)

where proxµλ‖hn‖1 (·) denotes the proximal operator [25] of
λ‖hn‖1. This rule promotes the sparsity of h j,n, and then some
of coefficients becomes h j,n ≈ 0. This yields the following
update rule of the dictionary:
Elimination of elements (1)

For all j ∈ Jn+1, if h j,n ≈ 0, remove u j, that is,

Jn+1 ← Jn+1 − { j}. (22)

Although the dictionary adaptation proposed in [23, 24]
and the previous section, elements in the dictionary are pre-
vented from getting close to each other. This yields the in-
crease of the dictionary size especially when the system dy-
namically changes. Thus, in this section we propose another
method that uses a fixed step size instead of the adaptive step
size in (10) and that removes an element close to another one.
Dictionary elements obtained from the above rule are updated
to minimize MSE with an update similar to (10) as

u j,n+1 = u j,n − ηg j,n, (23)

where, η is a fixed step size. After the update of elements,
u j,n+1, they are judged whether it should be removed from the
dictionary as follows:
Elimination of elements (2)

If |κ(ui,n+1,u j,n+1)| > δ and |hi,n| > |h j,n|, then remove
u j,n+1, that is,

Jn+1 ← Jn+1 − { j}. (24)
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Table 1. Parameters
KNLMS µ = 0.09, ρ = 0.03, ζ = 1, δ = 0.5

AKNLMS µ = 0.09, ρ = 0.03, ζ = 1
δ = 0.5, η0 = 1.0 × 10−3

MAKNLMS µ = 0.09, ρ = 0.03, ζ = 1, δ = 0.5
η0 = 1.0 × 10−3, β = 1.2 × 10−4

AKNLMS-l1 µ = 0.09, ρ = 0.03, ζ = 1, δ = 0.5
η = 1.0 × 10−3, λ = 5.0 × 10−3

Fig. 2. Learning curves of KNLMS, AKNLMS, MAKNLMS
and AKNLMS-l1. AKNLMS-l1 shows a rapid adaptation and
the smallest MSE. The results are obtained by the average
over 100 independent runs.

This update rule removes elements that do not satisfy (12).
We call the proposed algorithm developed in this section
the dictionary adaptation for KNLMS with l1 regularization
(AKNLMS-l1).

4. NUMERICAL EXAMPLES

We consider the nonstationary nonlinear system as follows:

• dn := 10{exp (−(un − 3)2) + exp (−(un − 7)2)} for 0 ≤
n ≤ 5000;

• dn := 10{exp (−(un − 13)2) + exp (−(un − 17)2)} for
5000 < n ≤ 10000,

where dn is corrupted by noise sampled from a zero-mean
Gaussian distribution with standard deviation equal to 0.3.
Input signals un are sampled from uniform distribution on
the interval [0, 10] when 0 ≤ n ≤ 5000 and the interval
[10, 20] when 5000 < n ≤ 10000. In the online prediction
of the system, we compare the AKNLMS [23], the proposed

Fig. 3. Mean dictionary sizes of KNLMS, AKNLMS,
MAKNLMS and AKNLMS-l1. The change of the sys-
tem causes the increased size of the dictionary. However,
AKNLMS-l1 can suppress the increase.

MAKNLMS and AKNLMS-l1. We adopted MSE as the eval-
uation criteria. The MSE is calculated by taking an arith-
metic average over 100 independent realizations. Parameters
of each filter in this experiment are given in Table 1.

Figures 2 and 3 show the MSE and the mean dictio-
nary size of filters at each iteration, respectively. In Fig. 2,
AKNLMS shows lower MSE than KNLMS. However, Fig. 3
illustrates that AKNLMS has the large dictionary size com-
pered to the others due to the increase of similar dictionary
elements. This may be caused by inferior approximation
and the incorrect approximation in [23, 24]. It is moreover
observed that MAKNLMS shows lower MSE than KNLMS.
However, the dictionary size monotonically increases due to
the system change. Finally, it is seen that, thanks to the l1
regularization and the element removal to satisfy coherence
condition, AKNLMS-l1 shows lower MSE and smaller the
dictionary size than the others.

5. CONCLUSION

This paper proposed an efficient update algorithm for dictio-
nary adaptation incorporated with the l1 regularization pro-
moting sparsity in kernel adaptive filtering. Numerical exam-
ples showed that the proposed method has advantages over
the previous methods in the decreased number of elements
in the dictionary and the high approximation performance in
the presence of system changes. Even though the numerical
example shown in this paper is a limited case of L = 1, we
can confirm the efficiency of the proposed methods. Higher
dimensional examples and practical applications in a real en-
vironment will be reported in near future.
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