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ABSTRACT
This paper considers multiple binary hypothesis tests with adaptive
allocation of sensing resources from a shared budget over a small
number of stages. A Bayesian formulation is provided for the mul-
tistage allocation problem of minimizing the sum of Bayes risks,
which is then recast as a dynamic program. In the single-stage case,
the problem is a non-convex optimization, for which an algorithm is
presented that ensures a global minimum under a sufficient condi-
tion. In the mutistage case, the approximate dynamic programming
method of open-loop feedback control is employed. The proposed
allocation policies outperform alternative adaptive procedures when
the numbers of true null and alternative hypotheses are not too im-
balanced. In the case of few alternative hypotheses, the proposed
policies are competitive using only a few stages of adaptation. In all
cases substantial gains over non-adaptive sensing are observed.

Index Terms— Sequential decisions, signal detection, multiple
testing, dynamic programming, non-convex optimization.

1. INTRODUCTION

This paper is concerned with the problem of multiple binary hy-
pothesis tests under a shared sensing budget. Sensing resources can
be allocated adaptively over multiple stages to the hypothesis tests,
taking past observations into account. Intuitively, the advantage of
adaptive allocation is that resources can be continually shifted from
tests where the outcome is more certain to those that are less cer-
tain. For example, in wide-area search and surveillance, sensors can
be directed to gradually concentrate more time, samples, or energy
on regions where target presence is the most uncertain. Other appli-
cations include adaptive spectrum sensing [1] and multistage gene
association studies [2].

Adaptive and sequential methods for multiple testing have
been studied recently in [3–5], particularly in the context of sup-
port recovery for sparse signals. These works showed that simple
multistage thresholding procedures can asymptotically drive error
rates to zero with slower growth in resources compared to non-
adaptive procedures; [3] focused on Gaussian observations and false
discovery/non-discovery rates, while [4, 5] considered more general
likelihoods and the family-wise error rate. The present work differs
from [3–5] in three major respects: First, no sparsity assumption
is made on the number of alternative (or null) hypotheses that are
true. Indeed, significant performance gains are demonstrated even
when the hypotheses occur in equal numbers. Second, the number of
stages is decoupled from the number of hypothesis tests and is delib-
erately constrained to be small. It is shown that much of the benefit
of adaptation can be realized with only two or three stages. Third, a
Bayesian formulation is adopted that allows for composite null and
alternative hypotheses given statistical prior knowledge; [3–5] in
contrast require a simple null hypothesis but less prior information.

The present paper and [3–5] are related more broadly to the lit-
erature on sequential (single) hypothesis testing [6], especially with

more than two hypotheses and control over observations [7–11].
However, while it may be possible in principle to apply these meth-
ods to multiple tests, performance losses may be expected compared
to more specialized methods such as in [3–5] and herein. Moreover,
sequential procedures as defined in [7–11] allow an indefinite num-
ber of stages at which sensing decisions can be made, in contrast
to the approach here where the number of stages is fixed and small
and the resource budget is also fixed. In addition, [7–11] consider a
finite number of sensing choices of differing quality but equal cost,
whereas in this work the sensing control is continuous-valued and
quality is a direct function of resource cost.

The statistical model and dynamic programming methods in this
paper are similar to those in [12] (except for sparsity). However,
the objective of hypothesis testing differs significantly from [12],
which focuses on amplitude estimation of sparse signals. This dif-
ference has an important consequence for optimization: the Bayes
risk adopted here as the performance metric is not a convex func-
tion of the resource allocations, unlike the estimation error metrics
in [12]. The lack of convexity complicates the resource allocation
problem and necessitates an alternative optimization method.

Section 2 presents a Bayesian formulation of multiple binary hy-
pothesis testing with adaptive allocation of sensing resources. Only
Gaussian observations are considered in this paper. The multistage
allocation problem of minimizing the sum of Bayes risks is then re-
cast as a dynamic program. In Section 3, single-stage and multi-
stage solutions are developed. In the single-stage case, an algorithm
is proposed involving parallel single-variable minimizations and an
outer search over a Lagrange multiplier. Despite the non-convexity
of the Bayes risk objective function, this algorithm can guarantee a
global minimum when a sufficient condition is met. In the multi-
stage case, a tractable approximate solution is proposed using open-
loop feedback control [13] that improves monotonically as the num-
ber of stages increases, similar to [12]. Section 4 presents numeri-
cal simulations comparing the proposed allocation policies to [3, 5],
demonstrating advantages when the numbers of null and alternative
hypotheses are within an order of magnitude of each other. In the
highly imbalanced case, the proposed policies remain competitive
and achieve most of the gains using two or three stages.

2. PROBLEM FORMULATION

We consider n binary hypothesis tests indexed by i = 1, . . . , n. A
priori, the ith null and alternative hypotheses are true with known
probabilities P(Hi = 0) = 1− pi(0) and P(Hi = 1) = pi(0), and
Hi, Hj are statistically independent for i 6= j. It is not assumed that
pi(0) � 1, i.e., the alternative hypothesis is not necessarily rare,
unlike in [3–5, 12].

Observations are made in T stages (indexed in parentheses) fol-
lowing a model similar to the one in [12]. The quality of each obser-
vation is controlled by the amount of sensing resources allocated to
it. Specifically, given resource ui(t− 1) > 0, the observation yi(t)
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for test i in stage t is conditionally distributed as

yi(t) | xi, ui(t− 1) ∼ N (xi, ν
2/ui(t− 1)), t = 1, . . . , T, (1)

so that the precision (inverse variance) increases with ui(t − 1). If
ui(t − 1) = 0, the observation yi(t) is not taken. The mean xi
depends on Hi as specified in (3) below. The nominal variance ν2

is assumed to be known. The observations yi(t) are independent
across tests i and conditionally independent across stages t given xi
and ui(t), t = 0, . . . , T − 1 (but not unconditionally independent).

As an example of the observation model above with ui(t−1) an
integer, (1) results if ui(t− 1) i.i.d. observations, each distributed as
N (xi, ν

2), are taken in stage t and yi(t) is computed as the sample
mean. More generally, ui(t − 1) is allowed to take on any non-
negative real value to model continuous-valued resources and for
mathematical convenience. The resource allocations are constrained
by an overall deterministic budget,

T−1∑
t=0

n∑
i=1

ui(t) = Bn, (2)

so that the average budget per test is B. This budget constraint cou-
ples the hypothesis tests together.

In adaptive sensing, resource allocations can depend causally
on all previous observations. Define y(t) = (y1(t), . . . , yn(t))
(similarly for other vectors) and Y(t) = {y(1), . . . ,y(t)}. Then
ui(t− 1) in (1) is in general a function of Y(t− 1). The mappings
Y(t) 7→ u(t) are referred to as the resource allocation policy.

The mean parameters xi in (1) are independent over i and follow
Gaussian distributions conditioned on Hi,

xi | Hi ∼ N
(
µHi
i (0), σHi

i (0)2
)
, Hi = 0, 1, (3)

with known prior parameters µHi
i (0) and σHi

i (0)2. Hence both null
and alternative hypotheses can be composite if σ0

i (0), σ
1
i (0) > 0,

generalizing [3–5, 12]. By interchanging if necessary, it is assumed
that σ0

i (0) ≤ σ1
i (0) without loss of generality.

After all observations have been collected, a decision Ĥi(T ) :
Y(T ) 7→ {0, 1} is made in each of the hypothesis tests. Perfor-
mance is measured by the sum of Bayes risks,

R =

n∑
i=1

EHi,Y(T )

[
(1−Hi)Ĥi(T ) + cHi

(
1− Ĥi(T )

)]
, (4)

where EHi,Y(T ) denotes expectation over Hi and Y(T ), and c is
the cost of a Type II error (miss) relative to a Type I error (false
alarm). For c = 1, (4) is the sum of the probabilities of error in each
test, which is a union bound on the family-wise error rate, i.e., the
probability of any error. It is also possible to minimize the family-
wise error rate directly using an approach similar to the one in this
paper, but this is not developed further here.

In summary, the problem is to minimize the Bayes risk sum (4)
with respect to the resource allocation policy {u(t)} subject to the
total budget constraint (2).

2.1. Dynamic programming formulation

Similar to [12], the multistage minimization of the Bayes risk R
can be cast as a dynamic program [13], where the state is a belief
state summarizing the posterior distributions of Hi and xi given
observations Y(t). Using [12, Lem. 1] to derive these posterior
distributions, it can be shown that the variables Hi | Y(t) remain
independent over i with parameters pi(t) = P(Hi = 1 | Y(t)), and

xi | Hi,Y(t) remain independent Gaussian with means µHi
i (t) =

E [xi | Hi,Y(t)] and variances σHi
i (t)2 = var (xi | Hi,Y(t)).

The posterior parameters evolve according to

pi(t+ 1) =
pi(t)f

1
i

(
yi(t+ 1); t

)
pi(t)f1

i

(
yi(t+ 1); t

)
+ (1− pi(t))f0

i

(
yi(t+ 1); t

) ,
(5a)

µHi
i (t+ 1) =

ν2µHi
i (t) + σHi

i (t)2ui(t)yi(t+ 1)

ν2 + σHi
i (t)2ui(t)

, (5b)

σHi
i (t+ 1)2 =

ν2σHi
i (t)2

ν2 + σHi
i (t)2ui(t)

, (5c)

where in (5a), fHi
i (·; t) is the probability density function (PDF) of

yi(t+ 1) | Hi,Y(t) ∼ N
(
µHi
i (t), σHi

i (t)2 + ν2/ui(t)
)
, (6)

and t = 0 corresponds to the prior parameters.
Define the belief state as ξ(t) = (p(t),µ(t),σ(t)2, U(t)),

where µ(t) and σ(t)2 include all components indexed by i and
Hi = 0, 1, and U(t) is the resource budget remaining in stage t with
U(0) = Bn initially. This state definition fulfills the requirement
for a dynamic program as specified below.

Proposition 1. The Bayes risk sum (4) is the expected value of a
function only of the state ξ(T − 1) and control u(T − 1),

R =

n∑
i=1

EY(T−1)

[∫ ∞
−∞

min
{(

1− pi(T − 1)
)
f0
i (y;T − 1),

cpi(T − 1)f1
i (y;T − 1)

}
dy

]
, (7)

where the PDFs f0
i (·;T − 1) and f1

i (·;T − 1) are completely pa-
rameterized in (6) by ξ(T − 1) and u(T − 1).

Proof outline. The Bayes risk is minimized by the weighted maxi-
mum a posteriori (MAP) rule, which can be expressed in terms of
pi(T ). Then (7) is obtained by iterating expectations over yi(T ) |
Y(T − 1) and Y(T − 1), substituting for pi(T ) using (5a), and
simplifying. More details are provided in [14].

3. RESOURCE ALLOCATION POLICIES

This section discusses single-stage and multistage resource alloca-
tion policies that minimize the Bayes risk sum (7) under the budget
constraint (2). As discussed in Section 3.2, the single-stage policy
of Section 3.1 also applies to the last stage of any multistage policy.

3.1. Single-stage policy

In the single-stage case T = 1, the expectation in (7) is absent and
the objective function simplifies. The remaining integral is the Bayes
risk of the optimal test between two Gaussian distributions with dif-
ferent means and variances. The Bayes risk can be evaluated by
solving a quadratic inequality to determine the decision regions cor-
responding to the two terms in the minimization in (7), and then
computing the Gaussian integrals, i.e., the Type I and Type II error
probabilities. These calculations are fairly standard and the details
can be found in [14]. Here the integral in (7) is simply denoted as
Ri(ui; ξi), where the stage index T − 1 is suppressed to simplify
notation, and ξi represents the components of the state with index i.
The single-stage resource allocation problem is therefore
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R∗(ξ) = min
u

n∑
i=1

Ri(ui; ξi) s.t.
n∑

i=1

ui = U, ui ≥ 0. (8)

Fig. 1(a) shows that the Bayes riskRi(ui; ξi) is a decreasing but
non-convex function of ui for a particular choice of parameters ξi.
These properties hold in general for other choices of ξi, implying
that (8) is a non-convex optimization problem.
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Fig. 1. (a) The Bayes risk Ri(ui; ξi) is a non-convex function of ui.
(b) The Lagrangian in (9) can have more than one minimizer.

Despite the absence of convexity, it is still possible in some cases
to guarantee a globally optimal solution to (8). We consider min-
imizing a Lagrangian of (8) in which only the equality constraint
is dualized with Lagrange multiplier λ. The Lagrangian then de-
couples over i. Define the (possibly non-unique) minimizer of each
Lagrangian component as

ui(λ) ∈ arg min
ui≥0

Ri(ui; ξi) + λui. (9)

Since Ri(ui; ξi) is bounded from above by min{1 − pi, cpi} =
Ri(0; ξi), a negative value for λ in (9) would result in divergence
toward infinity. Hence it is sufficient to consider λ ≥ 0. The follow-
ing result, adapted from [15, Prop. 3.3.4], gives a sufficient condition
for u(λ) =

(
u1(λ), . . . , un(λ)

)
to be globally optimal for (8).

Lemma 1. If there exists a Lagrange multiplier λ ≥ 0 such that
a set of minimizers u(λ) =

(
u1(λ), . . . , un(λ)

)
defined by (9) is

feasible for problem (8), then u(λ) is a global minimum of (8).

The minimization in (9) also satisfies the monotonicity property be-
low, which confirms the interpretation of λ as a penalty parameter.
A proof of Lemma 2 is given in [14].

Lemma 2. If λ1 < λ2, then ui(λ1) ≥ ui(λ2) for any minimizers
ui(λ1), ui(λ2) in (9).

Based on Lemmas 1 and 2, the following algorithm is proposed
to solve (8), consisting of an outer bisection search over λ and inner
single-variable minimizations (9) to determine ui(λ), i = 1, . . . , n,
which can be done in parallel. Lower and upper bounds ui and
ui are maintained on each ui, where initially ui = 0 and ui =
∞. Any algorithm can be used to solve (9) subject to the bounds
ui ≤ ui ≤ ui, for example gradient descent with logarithmically-
spaced line search as used to generate the results in Section 4. Let
S(λ) =

∑n
i=1 ui(λ). If for a given λ, the resulting ui(λ) satisfy

S(λ) < U , then λ is decreased according to the bisection method,
the lower bounds ui are updated to the current solutions ui(λ), ex-
ploiting Lemma 2, and (9) is re-solved. Analogous actions are taken
if S(λ) > U . If S(λ) = U , then by Lemma 1, the algorithm termi-
nates with a globally optimal solution to (8).

For the bisection search over λ, the initial lower bound is set at
0. The lemma below is used to set the initial upper bound.

Lemma 3. Any minimizer ui(λ) in (9) is bounded from above as
ui(λ) < Ri(0; ξi)/λ = min{1− pi, cpi}/λ.

Proof. Since the Bayes risk Ri(ui; ξi) is positive for finite ui, if
ui ≥ Ri(0; ξi)/λ thenRi(ui; ξi)+λui > Ri(0; ξi) and ui cannot
be minimal.

It follows that a sufficient upper bound on λ is
∑n

i=iRi(0; ξi)/U ,
since any higher value can be seen to result in S(λ) < U . Lemma 3
is also used to further constrain the inner minimizations over ui

when it gives a tighter upper bound than ui.
The above algorithm does not always ensure a global minimum

for (8). Specifically, it may not be possible to satisfy the condition
in Lemma 1, i.e., there is no λ for which S(λ) = U to make u(λ)
feasible. The problem is illustrated in Fig. 1(b), which shows a value
for λ such that the Lagrangian in (9) has two separated minimizers.
Any change in λ would result in either the left or the right minimizer
being unique. Hence the function S(λ) is discontinuous and the
bisection search over λ may not converge with S(λ) = U . For the
results in Section 4, cases of non-convergence are addressed simply
by rescaling the final solution u(λ) so that it sums to U . The loss
in optimality appears to be insignificant for large n and can even be
bounded analytically, although this is not presented here.

3.2. Multistage policies

In a multistage adaptive policy, the last-stage allocation u(T − 1)
can depend on all previous observations Y(T − 1). In other words,
u(T−1) is determined after conditioning on Y(T−1), which again
removes the expectation from (7). Therefore the last-stage allocation
problem reduces to the single-stage case (8).

For a two-stage policy, it remains to determine the first-stage
allocation u(0). This is done recursively by solving

min
u(0)

Ey(1) [R
∗(ξ(1)) | ξ(0),u(0)] s.t.

n∑
i=1

ui(0) ≤ U(0),

(10)
where R∗(ξ(1)) is defined by (8) as the optimal cost of the sec-
ond stage, and the distribution of y(1) is parameterized by ξ(0) and
u(0) (see (6)). In the case of priors that are homogeneous over i,
i.e., pi(0), µHi

i (0), σHi
i (0)2 do not depend on i (but can depend on

Hi), then the first-stage allocation is also homogeneous by symme-
try, ui(0) = u(0), and (10) becomes a scalar minimization with re-
spect to u(0) ∈ [0, U(0)/n]. This minimization is performed offline
using Monte Carlo samples of y(1) to approximate the expectation
in (10) and the algorithm in Section 3.1 to approximate R∗(ξ(1)).

For an inhomogeneous prior or more than two stages, an open-
loop feedback control (OLFC) policy [13] is employed, similar to
[12]. Although the derivation of the policy is somewhat more in-
volved than in [12] and is given in [14], the end result is analo-
gous. Specifically, in stage t and conditioned on available obser-
vations Y(t) through the state ξ(t), the single-stage allocation prob-
lem (8) with ξ = ξ(t), U = U(t) is solved, resulting in u∗. Then
u∗ is scaled by β(t) ∈ [0, 1] to yield u(t) = β(t)u∗, thus con-
serving some of the resource budget for future stages. The multi-
pliers β(t) are optimized offline using Monte Carlo simulation as
described in [12]. As shown in [12, Prop. 2], this optimization of
β(t) ensures that the resulting policies improve monotonically with
the number of stages T .
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4. NUMERICAL RESULTS

The multistage resource allocation policies described in Section 3
are numerically compared to the distilled sensing (DS) [3] and se-
quential thresholding (ST) [5] procedures, as well as to a single-stage
non-adaptive baseline policy (NA). For the results presented below,
the number of hypothesis tests n is 104 and a homogeneous prior
is used: pi(0) = p(0), µ0

i (0) = 0, µ1
i (0) = 1, σ0

i (0)
2 = 0, and

σ1
i (0)

2 = 1/16 for all i. Observations are simulated according to
(1) and (3). The observation noise parameter ν2 is normalized to
1 and the average budget per test B is varied. Since ν2 and ui(t)
always appear in the same ratio as in (1), an equivalent alternative
would be to fix B and vary ν2 instead. The performance metric is
(4) with c = 1, i.e., it is the expected number of errors of either type.

The number of stages in the proposed OLFC policies is limited
between 2 and 4. In all cases, the first-stage allocation u(0) is uni-
form because of the homogeneous prior. For T = 2, Fig. 2(a) shows
the first-stage budget fraction u(0) that results from the offline op-
timization (10) for different values of p(0) and B. For p(0) = 0.5,
u(0) is relatively constant as a function of B, while for small p(0),
u(0) increases up until the high-budget regime B > 102. Perfor-
mance is not too sensitive to the exact value of u(0) since the ob-
jective function in (10) tends to be relatively flat away from the ex-
tremes u(0) = 0 and u(0) = 1. Fig. 2(b) plots u(0) for T = 3.
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Fig. 2. First-stage allocation ui(0) = u(0) in the proposed 2-stage
(a) and 3-stage (b) policies as a function of the mean proportion p(0)
of alternative hypotheses and the resource budget per test B.

For DS and ST, while [3, 5] prescribe values for T as functions
of n, in these experiments all T ∈ {2, . . . , 12} are tested and re-
sults for the best T are shown. A similar optimization is performed
over the parameter ρ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} in [5]. The budget
allocations over stages follow [3, eq. (4),(5)] and [5, eq. (14)] respec-
tively, except in the last stage of ST where the remaining budget is
used up entirely. Two versions of DS and ST are implemented: the
versions originally proposed in [3, 5] that use only the last stage of
observations to make decisions, and Bayesian versions (DSB, STB),
not proposed in [3, 5], in which the allocations u(t) are specified
by [3,5] but inference is done through the posterior update equations
(5), thus incorporating all stages of observations. As seen below, the
Bayesian versions perform considerably better.

The performance of the policies is compared in Fig. 3. For
equiprobable hypotheses, p(0) = 0.5, the proposed 2-stage policy
achieves significant reductions in error (up to a factor of 5) relative
to the baseline NA policy, while the 3-stage OLFC policy yields fur-
ther improvement. Since DS(B) and ST(B) are not designed for this
non-sparse scenario, they perform less well, in some cases worse
than NA. For p(0) = 0.1, the 3-stage OLFC policy essentially dom-
inates the other policies, and at moderate to large resource levels in

Fig. 3(d), it is joined by the 2-stage OLFC policy. For p(0) = 0.01
and low resources in Fig. 3(e), DSB and STB have slightly lower
error rates than the 4-stage OLFC policy, while for higher resources
in Fig. 3(f), the opposite is true. Moreover, the 2-stage OLFC pol-
icy attains most of the gains of these best-performing policies that
use more stages. In particular, the optimized DSB and STB policies
shown in Fig. 3 use at least 8 and 6 stages respectively for B ≤ 1.
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Fig. 3. Expected number of errors ((4) with c = 1) resulting
from the proposed open-loop feedback control policies with T stages
(OLFC-T ), original and Bayesian versions of distilled sensing (DS,
DSB) and sequential thresholding (ST, STB), and a non-adaptive
baseline (NA). The legends in (a), (c), (e) also apply to (b), (d),
(f) respectively. For p(0) = 0.5, 0.1 in (a)–(d), OLFC-2 and/or
OLFC-3 outperform the alternative methods across budget levels.
For p(0) = 0.01 in (e)(f), OLFC-4 is competitive with DSB and
STB, while OLFC-2 achieves most of the gains using only 2 stages.

5. CONCLUSION

This paper has explored the benefits of adaptive sensing for multiple
binary hypothesis testing, notably in the regimes of balanced null
and alternative hypotheses and few allocation stages. Future work
includes generalizations to non-Gaussian observations, refinements
of both the single-stage optimization and multistage dynamic pro-
gramming procedures, and theoretical analysis that aims especially
to understand the gains in the non-sparse setting and at moderate,
non-asymptotic resource levels.
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