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ABSTRACT

In this study we use the crossing tree of a signal for the purpose of
analysis of H-sssi processes. The crossing tree performs an ad-hoc
decomposition of a signal adapted to its dynamics, and represents a
natural tool for the analysis of its local fluctuations. We present here
a new multifractal formalism and a novel approach for estimating the
spectrum of singularities ofH-sssi processes using the crossing-tree.
The performance of the crossing-tree based method is demonstrated
in a numerical study. Its performance is also compared with state-
of-the-art techniques based on wavelets, including wavelet-leaders.

Index Terms— H-sssi processes, crossing tree, multifractal for-
malism, adaptative decomposition, wavelets

1. INTRODUCTION

Scale invariance has been observed in time series in a wide range
of applications, including hydrodynamic turbulence, high frequency
finance, network traffic, signal and image processing. The dynam-
ics of data presenting scale invariance can be understood from the
relationship existing across a whole range of scales, which is sum-
marized in the spectrum of singularities D(h), where D(h) is the
Hausdorff dimension of the set of points with Hölder exponent h.

The spectrum of singularities conveys rich information about the
scaling properties and regularity of a process, and deriving tech-
niques for determining or estimating it (i.e. performing its multi-
fractal analysis) has received a lot of attention. Due to the discrete
nature of data, a direct computation of D(h) cannot be performed in
practice: estimation of the multifractal spectrum of a signal X typi-
cally happens in the context of the so-called multifractal formalism.
Let TX(a, t) denote numerically computable quantities, summariz-
ing the spatial displacement of X at time t and at a temporal scale
a. It is usually obtained from a comparison of the original process
with a reference pattern ψ dilated and located at different positions,
TX(a, t) = a−1

∫
X(u)ψ((u − t)/a)du. The process X is said to

possess scaling properties if the time averages of TX(a, tk) follow a
power law behaviour with respect to a,

n−1
a

na∑
k=1

|TX(a, tk)|q ∼ Cqaζ(q) as a→ 0 , (1)

where Cq is a positive constant depending on q, na is the number of
TX(a, tk) available at scale a, and where ζ(q) is referred to as the
partition function. The multifractal formalism relates the spectrum
of singularities D(h) to the Legendre-Fenchel transform ζ∗(h) =
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infq(1 + qh − ζ(q)) of ζ. When D(h) = ζ∗(h), the multifractal
formalism is said to hold. In general, ζ∗(h) only provides an upper
bound for D(h).

The choice of ψ in (1) plays a central role in the estimation of
the partition function. Multiresolution quantities based on a wavelet
decomposition of the process are the most common tool to date. The
contribution of the present study is to introduce a novel set of mul-
tiresolution quantities, defined in terms of the crossing tree.

Relation to earlier works. The crossing tree, defined in section
3, is a very general concept, and can easily be computed on real data.
The crossing tree was used recently to construct a class of monofrac-
tal and multifractal processes, see [1, 2]. In [3] the crossing tree was
used to estimate a time-change of a self-similar process, and in [4],
it was used to characterise and test if a process is a continuous local
martingale. In [5] it was applied to self-similar processes, to test for
self-similarity and stationary increments, and to obtain an asymp-
totically consistent estimator of the Hölder exponent. Only infor-
mation about the crossing tree structure was used there to estimate
the Hölder exponent, and the present contribution differs from the
kind of analysis found there, where information about the crossing
durations is used for the purpose of analysis.

Compared to usual wavelet based multifractal formalisms (e.g.
[6]), the crossing tree approach appears to be adaptive, and can be
used for irregularly sampled signals. The contribution presented here
extends earlier work presented in [7], see discussion at the end of the
paper.

The paper is organised as follows. In Section 2 we define scale-
invariant processes and in Section 3 we detail the construction of the
crossing-tree. The crossing-tree formalism is presented in Section 4,
and a numerical study follows in Section 5.

2. SCALE INVARIANT PROCESSES

A process X(t) is said self-similar if there exists an H ∈ (0, 1)
such that the equality X(ct) = cHX(t) holds for all c > 0 in finite-
dimensional distributions. If in addition the process X(t) has sta-
tionary increments, thenX(t) is said to beH-sssi. The most-studied
H-sssi processes are fractional Brownian motions (fBm), the only
self-similar Gaussian processes with stationary increments. Their
spectrum vanishes to a single point D(h) = 1 if h = H , and equal
to −∞ elsewhere. Let B(u) denote a Brownian motion. We also
study Hermite processes, defined as

HkH(t) =

∫
Rk

∫ t

0

(
k∏
j=1

(s− ui)−(1/2+(1−H)/k)
+

)
dsdB(u) ,
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Fig. 1. Formation of the crossing tree from a sample path, and cross-
ing tree notation. Variables are defined in the text.

where dB(u) = dB(u1) . . . dB(uk), for k ≥ 1, withH ∈ (1/2, 1),
and x+ = max(0, x). The case k = 1 corresponds to the case of an
fBm. For k ≥ 2, Hermite processes are non-Gaussian.

The Weierstrass function is defined as

WH(t) =
∑
k∈Z

λ−kH0

(
cos(ϕk)− cos(2πλk0t+ ϕk)

)
,

where H stands for the Hölder exponent and λ0 is a fundamental
harmonic. The Weierstrass function exhibits discrete scale invari-
ance (DSI), withWH(λ0t) = λH0 WH(t), in distribution. We con-
sider here a stochastic version of this function, obtained by choosing
the phases {ϕk}k∈Z as a sequence of i.i.d. variables uniformly dis-
tributed over [0, 2π]. The spectrum of singularities ofWH is thus
DWH (h) = 1 if h = H , and equal to −∞ elsewhere.

3. THE CROSSING TREE

Let X : R+ → R be a process, with a.s. continuous sample paths
and X(0) = 0. For m ∈ Z we define level-m crossing times Tmk by
putting Tm0 = 0 and

Tmk+1 = inf{t > Tmk |X(t) ∈ 2mZ, X(t) 6= X(Tmk )} ,

where 2mZ = {x | x = 2ma for a ∈ Z}. The k-th level-m (equiv-
alently scale 2m) crossing Cmk := {(t,X(t)) | Tmk−1 6 t < Tmk } is
the bit of sample path from Tmk−1 to Tmk . Denote by Dm

k the cross-
ing duration ofCmk . There is a natural tree structure to the crossings,
as each crossing of size 2m can be decomposed into a sequence of
crossings of size 2m−1. The nodes of the crossing tree are crossings
and the offspring of any given crossing are the corresponding set of
subcrossings at the level below. An example of a crossing tree is
given in Figure 1. The crossing-tree can easily be computed for ir-
regularly time-sampled signals, and as such the formalism developed
later is adapted to this kind of data.

It is convenient to use the address space I = ∪∞k=0Nk, where
Nk is the set of concatenations of k integers and N0 = ∅, to label
the crossings of the process. For simplicity we will consider the first
crossing from 0 to ±1 and make this the root of our crossing tree.
Label the root crossing ∅ and its subcrossings (each of size 1/2) 1
to Z∅. The subcrossings of a crossing i = i1i2 · · · in ∈ Nn are then
labelled i1, . . . , iZi, where Zi is the number of subcrossings of i and
ij = i1i2 · · · inj. Necessarily Zi is an even integer larger or equal
to 2. Denote by Nn the size of generation n. Each crossing i is one

of two types, up or down, which we denote by σi. Also letWi be the
duration of crossing i, then the sample path is completely described
by {(σi,Wi) : i ∈ I}. Crossing-tree notation is summarized in
Figure 1.

4. MULTIFRACTAL FORMALISMS

4.1. Wavelet-based formalisms

Estimation for H-sssi typically makes use of wavelet coefficients, see
e.g. [8]. Consider the wavelet decomposition of a signal X(t),

X(t) =
∑
n,k∈Z

cn,kψ(2
nt− k) ,

with cn,k = 2n
∫
X(t)ψ(2nt − k), for some mother wavelet ψ.

If we denote by λn,k = [k2−n, (k + 1)2−n) a dyadic cube at
scale n, with k ∈ Z, the wavelet-based structure function of X
is Swc(q, n) = 2−n

∑
k |cn,k|

q , where the sum is taken over all
dyadic cubes λn,k with non vanishing wavelet coefficients. Provided
Swc(q, n) scales according to (1), we obtain the wavelet partition
function,

ζwc(q) = lim inf
n→+∞

(
logSwc(q, n)

log 2−n

)
, q ∈ R , (2)

which leads to the multifractal formalism [9]

DX(h) = inf
q∈R
{1− ζwc(q) + hq} .

A major drawback of using wavelet coefficients is that the estima-
tion of the structure function Swc(q, n) can be unstable for negative
values of q, since wavelet coefficients can be arbitrarily small. The
wavelet leaders formalism addresses this issue [6]. Put 3λn,k =
λn,k−1 ∪ λn,k ∪ λn,k+1, which is the cube centered around λn,k,
three times wider. The wavelet leaders dn,k of a bounded function
X(t) are defined as

dn,k = sup
{m,i |λm,i⊂3λn,k}

|cm,i| .

The wavelet leader structure function is Swl(q, n) = 2−n
∑
k |dn,k|

q ,
where the sum is taken over all non vanishing coefficients. The scal-
ing function is

ζwl(q) = lim inf
n→+∞

(
logSwl(q, n)

log 2−n

)
, q ∈ R , (3)

which leads to the multifractal formalism

DX(h) = inf
q∈R
{1− ζwl(q) + hq} .

4.2. Crossing-tree based formalism

Let i ∈ N∞ be such that for each n, the size 2−n crossing that
contains t is i|n, where i|n is i truncated to n places. Let Ti|n be the
start time of crossing i|n, then Ti|n → t as n→∞, so we have

|X(t0 +Wi|n)−X(t0)| ≈ 2−n =W
−n log 2/ logWi|n
i|n .

Thus (when everything works, for example for the Brownian motion,
or more generally, for Canonical Embedded Branching Processes,
see [2]) we get that

h(t0) = lim
n→∞

−n log 2/ logWi|n , (4)

3513



where

h(t0) = lim inf
ε→0

1

log ε
log sup
|u−t0|<ε

|X(u)−X(t0)|

is the Hölder exponent of the process at time t. Equation (4) gives
the fundamental relationship between the multifractal spectrum and
the crossing tree.

Given t, let i ∈ N∞ be such that for each n, the size 2−n cross-
ing that contains t is i|n. Then, our analogue of the multiresolution
quantity TX(2−n, t) is Wi|n. We say that the process X(t) pos-
sesses scaling properties if time averages of the crossing durations
follow a power law behaviour,

Sct(n, q) =
1

Nn

∑
i|n

|Wi|n|q ∼ C′q2−nζct(q) , (5)

as n → ∞, where the sum is taken over all crossings of size 2−n.
We call Sct(n, q) the structure function and ζct the crossing tree
partition function. The partition function can be obtained from the
structure function as a limit,

ζct(q) = lim inf
n→∞

logSct(n, q)

−n log 2 . (6)

The difference between partition function (6) and wavelet-based par-
tition functions (2) and (3), is that it relies on an adaptive decompo-
sition of the signal: wavelet methods rely on a time decomposition
of the signal whereas the proposed method relies on a space decom-
position of the signal.

We proceed to some heuristic arguments. The definition of
the crossing tree partition function at (6) implies that approxi-
mately Sct(n, q) ∼ 2−nζct(q), and relation (4) roughly shows that
Wi|n ∼ 2−n/h(t0). For a given Hölder exponent h, when the Zi

are mutually independent and identically distributed with mean µ,
there are about µD(h)n of the Wi|n that contribute to the sum in
(5). Since Nn ∼ µn, it follows that the main contribution to the
structure function at (5) comes from

2−n log2 µµD(h)n2−nq/h = 2−{log2 µ+q/h−D(h) log2 µ}n .

Making use of the fact that for self-similar processesH = log 2/ logµ,
as we let n→∞, the dominant term comes from the smallest expo-
nent, so that

ζct(q) = inf
h
{(q + 1)/h−D(h)/h} . (7)

For a monofractal process with spectrum of singularities collapsing
at a single point h = H , one gets ζct(q) = q/H . This result is
proved formally for Brownian motion in [2] (Theorems 5.1 and 5.2),
but remains an open conjecture for other self-similar monofractal
processes. The numerical work supported in the next section sup-
ports representation (7). Wavelet based techniques also yield a lin-
ear partition function for monofractal signals, however with a slope
equal to H for H-sssi processes, compared to 1/H using a crossing
tree analysis. The crossing tree formalism is reversed compared to
wavelet techniques: the decomposition of the signal is on a horizon-
tal grid, instead on a vertical grid.

5. ESTIMATION PROCEDURE

5.1. Log-cumulants

Estimation of the crossing-tree partition function (7) is obtained
from a weighted linear regression of log2 Sct(n, q) on n, ζ̂ct(q) =

Crossing tree Wav. leaders Wav. coef.
H1
H(t) 0.803 (0.768 ,0.841) 0.798± 0.064 0.800± 0.103
H2
H(t) 0.794 (0.732 ,0.867) 0.800± 0.121 0.799± 0.150
H3
H(t) 0.787 (0.744 ,0.836) 0.796± 0.107 0.800± 0.131
H4
H(t) 0.789 (0.753 ,0.827) 0.800± 0.103 0.803± 0.124
WH(t) 0.800 (0.778 ,0.824) 0.799± 0.049 0.801± 0.093

Table 1. Estimates 1/χ̂1, ĉwc
1 and ĉwl

1 with confidence limits
1/(χ̂1 ± 1.96 σ̂χ1) and ĉ·1 ± 1.96 σ̂c·1 , where σ̂· are estimates of
the standard deviation from Monte-Carlo simulations, for Hermite
processes, and the Weierstrass function for H = 0.8.

∑n2
n=n1

wn log2 Sct(n, q), where the wn satisfy
∑
nwn = 1,

and
∑
wn = 0. They can be expressed as wn = bn(Bn −

Bn)/(BBnn − B2
n), where B =

∑
bn, Bn =

∑
nbn, and

Bnn =
∑
n2bn. We take bn = Nn, the number of crossing dura-

tions available at scale n. An alternative method is to first consider
a polynomial expansion of the partition function

ζct(q) =
∑
p≥1

χp
qp

p!
, (8)

and then to estimate the coefficients χp. Estimation of the coeffi-
cients χp is obtained from the estimation of the cumulants of the
log of the crossing durations. Indeed, if we replace the time average
with the statistical average, as first suggested in [10], then equation
(5) reads E|Wi|n|q = Eeq logWi|n = C′′q 2

−nζct(q). A cumulant
expansion then yields

logEeq logWi|n =
∑
p≥1

Kp,n
qp

p!
= logC′′q + ζct(q) log 2

−n , (9)

where Kp,n is the cumulant of order p of logWi|n. Then from (9),
the Kp,n are of the form Kp,n = kp + χp log 2

−n, so that∑
p≥1

Kp,n
qp

p!
=
∑
p≥1

kp
qp

p!
+

∑
p≥1

χp
qp

p!

 log 2−n . (10)

Identifying the right hand side of (10) with (9) yields (8) as re-
quired. Estimation of the first three cumulants Kp,n is done using
K̂1,n = s1/Nn, K̂2,n = (Nns2 − s21)/N

[2]
n , and K̂3,n = (N2

ns3 −
3Nns1s2+2s31)/N

[3]
n , whereN [r]

n = Nn(Nn−1) . . . (Nn−r+1),
and sj =

∑
i|n(logWi|n)

j , for j = 1, 2, 3. The κp are then

estimated from a weighted linear regression of K̂p,n on log 2−n,

χ̂p = (log2 e)
n2∑

n=n1

wnK̂p,n, where thewn are as before. In view of

the discussion in the previous section, it is expected that 1/χ1 = H
and χ2 = 0 for the class of H-sssi processes considered in sec-
tion 2. We take 1/χ̂1 as an estimator of H . The derivation above is
motivated from the techniques developed in [11], so that everything
holds replacing the crossing tree partition function with ζwl(q). We
denote by cwl

p (resp. cwc
p ) the coefficients in a polynomial expansion

of ζwl(q) (resp. ζwc(q) ). In particular, ĉwc
1 /ĉwl

1 are estimators ofH .

5.2. Numerical work

For each process presented in section 2, we compare the perfor-
mance of the wavelet coefficients, wavelet leaders, and crossing tree
based multifractal formalisms. The partition functions are estimated
from an average of 1000 realizations of 215 sample points each.
The wavelet partitions functions are estimated using Daubechies’
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Fig. 2. Estimation of the partition function for q varying between
-10 and 10 using wavelet coefficients (�) and wavelet leaders (◦),
left column, and using the crossing tree, right column. The dashed
line is the theoretical line. From top to bottom, Hermite with k = 2,
3, and 4, and Weierstrass function, with H = 0.7.

wavelets with 3 vanishing moments, from scale 23 to 212 using Mat-
lab routines from [11, 12]. The crossing tree partition function is
estimated from scale 22 to 25. Scales are chosen according to the
temporal (wavelet) or spatial fluctuations (crossing-tree) of the sig-
nal, and thus differ in the two approaches. Table 1 presents estimate
1/κ̂1 for the crossing tree, and ĉ·1 for the wavelet coefficients and
wavelet leaders, which we take as estimates of the Hölder exponent
H . The quality of the estimation using the crossing tree is compa-
rable to estimates relying on wavelet leaders. Figure 2 presents the
results obtained for Hermite processes with H = 0.7. In each case,
the wavelet coefficient based formalism is not able to correctly esti-
mate the partition function for negative values of q, compared to an
estimation based on wavelet leaders or on the crossing tree. Other
values of H > 0.5 give similar results but are not presented here.
Estimation of the partition function for the fBm give similar results
as for Hermite with k = 2, with lower variance of the estimate. The
estimation for large positive q is better using the crossing tree than
with wavelet leaders for the class of Hermite processes, at the ex-
pense of a higher variance for negative qs. Finally, estimate χ̂2 is
consistent with a linear partition function, for which χ2 = 0.

The present study extends earlier preliminary work presented in

[7] in many ways. Firstly, the method is tested on a wider class
of processes, indicating the validity of the approach for H-sssi pro-
cesses. Secondly, it offers a comparison of the method with wavelet-
based techniques, known to perform well on H-sssi processes, and
shows similar performance on this class of processes. Next, the par-
tition function is estimated from the cumulants of the log of the
crossing durations, and an estimator of H is given. Finally, this
study sets the grounds for further theoretical developments, the first
step being formally proving the crossing-tree formalism (7).

Further preliminary numerical work not presented here indicates
that the estimation of the partition function using the crossing-tree
can be further improved if instead of using (5), we defined the struc-
ture function using the q-th moments of the sum of three consecu-
tive crossing durations. Motivation for doing this comes from the
study of the spectrum of singularities of non-negative multifractal
measures, see for example [6], section 2.1. The bias observed on
Figure 2 for negative values of q almost vanishes in that case. This
work is under current investigation.
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