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ABSTRACT

A theory that predicts the behaviors of the Filtered-X LMS
algorithm was derived by using a statistical-mechanical
method. In this paper, the theory is generalized to explain
the system behaviors in the case of an actual primary path. In
the theory, cross-correlations between the element of a pri-
mary path and that of an adaptive filter and autocorrelations of
the elements of the adaptive filter are treated as macroscopic
variables. Simultaneous differential equations that describe
the dynamical behaviors of the macroscopic variables are
obtained under conditions in which the tapped-delay line is
sufficiently long. The equations are analytically solved to
obtain the correlations and finally compute the mean-square
error. In order to generalize the theory to the case of an actual
primary path, the correlations of the elements of the primary
path are absorbed. The generalized theory quantitatively
predict the behaviors in the case of an actual primary path.

Index Terms— Filtered-X LMS algorithm, adaptive fil-
ter, active noise control, statistical-mechanical method, actual
primary path

1. INTRODUCTION

In recent years, active noise control (ANC) has been practi-
cally realized and applied to various fields[1, 2, 3]. ANC is
divided into two types, feedforward and feedback ANC[3].
The feedforward ANC is considered in this paper.

The Filtered-X LMS (FXLMS) algorithm, which is
the generalized procedure of the least-mean-square (LMS)
algorithm[4, 5, 6, 7] considering the impulse response of the
secondary path, is commonly used algorithm for the feedfor-
ward ANC[8].

Various methods have been proposed to theoretically an-
alyze the FXLMS algorithm. The principal method is to use
the independence assumption[9, 10, 11, 12, 13, 14, 15]. In the
independence assumption, successive tap input vectors of the
tapped-delay line are assumed to be independently generated
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at each time step. However, the actual elements of the tap
input vector are merely shifted to the next position. Hence,
each tap input vector is related to the previous one and the
vectors are thus, not independent. Owing to this fact, analy-
ses based on the independence assumption involve essential
and potential problems[5].

There are various methods based on assumptions other
than the independence assumption. In [16, 17, 18], another
form of independence is assumed. That is, the correlation be-
tween the tap input vectors is assumed to be more dominant
than the correlation between the weight vector of the adaptive
filter and the tap input vectors. However, analytical results
based on such assumptions cannot precisely explain exper-
imental results, particularly when there is little or no back-
ground noise. In [15, 19, 20, 21], the step size is assumed to
be small. In [22, 23], it is assumed that the reference signal is
sinusoidal. In [24], it is assumed that both the unknown sys-
tem and the adaptive filter have a small number of taps. Thus,
a general theory for the FXLMS algorithm has not been given
in the literature even though this algorithm is widely used.

In [25, 26], the dynamical and steady-state properties of
the FXLMS algorithm were theoretically analyzed by apply-
ing a statistical-mechanical method. Although the theory does
not use the conditions assumed in the previous studies de-
scribed above, it was assumed that the elements of the pri-
mary path are independently generated in the theory. How-
ever, the actual elements have strong correlations. Therefore
in this paper, the theory is generalized to apply it to the case
of an actual primary path by absorbing the correlations of the
elements.

2. ANALYTICAL MODEL OF FXLMS ALGORITHM

Figure 1 shows a block diagram of the ANC system con-
sidered in this paper. The primary path is represented
by an -tap FIR filter. Its coefficient vector is

. Each coefficient is generated from
the stochastic process expressed as

(1)

and is time-invariant. Here, denotes expectation. If
when , the elements of the impulse response
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of the primary path are uncorrelated with each other. In
this paper, the autocorrelated primary path is considered
by introducing the covariance function . The adaptive
filter is an -tap FIR filter. Its coefficient vector is

, where denotes the
time step. The reference signal is drawn from a distri-
bution with

(2)

The correlation function (2) implies that the reference sig-
nal is white if and that the model includes
the case of nonwhite reference signals. The reference sig-
nal is shifted through the tapped-delay line. Therefore, the
tap input vectors of the primary path and adaptive filter are

and
, respectively. The output

of the primary path is . On the other hand,
the output of the adaptive filter is .

Fig. 1. Block diagram of ANC system.

The secondary path is modeled by a -tap FIR filter.
Its coefficient vector is and is time-
invariant. The output of the secondary path is

(3)

The error signal is generated by adding an independent
background noise to the difference between and

. That is,

(4)

Here, the mean and variance of are zero and , respec-
tively.

In the FXLMS algorithm, the estimated secondary path
is used which has been estimated in advance by a certain

method, since the true secondary path is generally unknown.
When the estimated secondary path is a -tap FIR filter
and its coefficient vector is , the update
procedure obtained by the FXLMS algorithm is

(5)

where is the step size.

3. THEORY

From (3) and (4), the MSE is expressed as

(6)

Equation (6) includes many products of and and products
of and , including cases where their time steps are differ-
ent. To calculate these products, the -dimensional vectors

(7)

are introduced where and
mod . That is, is the -shifted vec-

tor of the coefficient vector of the adaptive filter. Note
that .

In the following, the limit is considered.
Here, is kept constant. When the shift number
is , we can obtain

(8)

Equation (8) is based on the fact that the shift of the tap input
vector is canceled by the shift of the elements of the adaptive
filter. Here, the effect of the edge of the adaptive filter can
be ignored since both and are -dimensional,
i.e., infinitely long, vectors. Equation (8) implies that the
gap in the time direction can be replaced by the subscript
of the vector . In addition, we introduce two macroscopic
variables defined by and

. and are the
cross-correlation between and and the autocorrelation
of , respectively. Here, min .

Then, ,
, and

are obtained. Here, the time steps of the
macroscopic variables have been omitted, since they do not
change by in the time updates in the model con-
sidered in this paper. The MSE (6) can be expressed in terms
of the cross-correlation and autocorrelation as

(9)

This formula shows that the MSE is a function of the macro-
scopic variables and . Therefore, we derive differential
equations that describe the dynamical behaviors of these vari-
ables in the following.
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sgn

sgn

(10)

First, a differential equation for is derived. When the
coefficient vector of the adaptive filter is updated, the -
shifted vector is also changed. This change can be de-
scribed as

(11)

Multiplying both sides of (11) on the left by the -dimensional
vector , then

(12)

is obtained. Here, . Then,
and are

obtained.
If the adaptive filter is updated times in an infinitely

small time , we can obtain equations that are similar
to (12). Here, the continuous time is defined by the time
step normalized by the tap length [25, 26]. Summing
all these equations, we obtain a differential equation that de-
scribes the dynamical behavior of in a deterministic form
as follows:

(13)

Next, multiplying (5) by (11) and proceeding in the same
manner as for the derivation of the above differential equation
for , we can derive a differential equation for , which is
given by (10), where sgn and are the sign and step
functions, respectively. In addition, ,

, , and .
The correlations for up to shifts are considered. There-

fore, the vectors are consid-
ered and it is assumed that when .

Thus, (10) and (13) are first-order ordinary differential equa-
tions with variables, that is,

(14)

where and the
matrix and vector are determined by (10) and (13). All
initial values of and are equal to zero because

and are independently generated. Therefore, at
is . Using this as the initial condition,

we can analytically solve (14) to obtain

(15)

Whether the MSE converges or diverges depends on the
step size. Therefore, knowing the upper bound of the step size
is very important. In the case of the analysis in this paper, the
MSE converges if and converge from (9). It is necessary
that all eigenvalues of the matrix in (14) are negative for the
convergence of and . Therefore, the upper bound of the
step size can be obtained by solving the closed-form equation

max , where max is the maximum eigenvalue of .

4. RESULTS AND DISCUSSION

Actual elements of the impulse response of a primary path
are generally strongly correlated with each other. For ex-
ample, Fig. 2 shows an example of the impulse response
of a primary path obtained experimentally. While the vari-
ance of the elements of the impulse response of the pri-
mary path is ,
the correlation between the neighboring elements is

. This indicates that
there are strong correlations between the elements of the im-
pulse response of the actual primary path. In our previous
studies[25, 26], the elements were assumed to be generated
independently. In this paper, the theory has been generalized
in the previous section to explain the system behaviors in the
case of the actual primary path. That is, the theory absorbs
the characteristics of the primary path by setting ,
where is defined by (1).
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Fig. 2. Example of impulse response of
an actual primary path.
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Fig. 3. Learning curves in the case of the
actual primary path.
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Fig. 4. Learning curves in the case of
the actual primary path and realistic sec-
ondary path.

Figure 3 shows the learning curves obtained theoretically
along with the corresponding simulation results in the case of
the actual primary path. The conditions are

; ; , i.e., the reference signal is white;
the variance of the background noise is ; the
secondary path of a two-tap FIR filter, i.e., , with
coefficients of ; and the estimated secondary path
has no error, in other words, .

In the theoretical calculations, the value of in (14) is
10. The results of six cases are plotted, that is, max

and . Here, max is the maximum value of
the subscript of defined by (1). For example, max
means that , that is, the theory only considers
the variance of the elements of the impulse response of the
primary path. The max means that , that
is, the theory considers .

In the computer simulations, and ensem-
ble means for 1000 trials are plotted. The impulse response
of the primary path in the computer simulation is that shown
in Fig. 2, that is, the actual impulse response measured exper-
imentally.

Figure 3 shows the following. The theory for max ,
that is, the theory only absorbing the variance, cannot pre-
dict the behaviors of the computer simulation. These results
correspond to our previous theory [25, 26]. The theory for
max also cannot predict the behaviors. However, the

larger the value of max, the more closely the theoretical re-
sults agree with the simulation results. The theoretical results
for max and almost overlap and agree with the sim-
ulation results reasonably well.

Figure 4 shows the learning curves obtained theoretically
along with the corresponding simulation results when the im-
pulse response of the primary path is that shown in Fig. 2, and
the coefficient vector of the secondary path is that reported
in [2]. This coefficient vector is highly realistic. The value
of is 25.

The variance of the background noise is . The
step size is . The other conditions are the same as
those for Fig. 3, that is, ; , i.e., the

reference signal is white; and the estimated secondary path
has no error, in other words, .

In the theoretical calculations, the results of three cases
are plotted, max and . The value of in (14) is
10. In the computer simulations, ensemble means for 1000
trials are plotted.

Figure 4 shows that the theoretical results agree with
the simulation results reasonably well. The three theoretical
learning curves almost coincide with each other, a strong
contrast to Fig. 3. This indicates that the variance of the
elements of the primary path is sufficient, and that the other
correlations do not affect the behaviors of the system when
the secondary path is realistic. The reason for the differ-
ence between Figs. 3 and 4 can be explained that the effect
of the correlation of the primary path is weakened by the
randomness of the elements of the secondary path.

As described in this section, by absorbing the correlations
of the elements of the impulse response of the primary path
by using a certain max, the theory derived in this paper can
predict the behaviors in the case of an actual primary path.
This shows that even if concrete values of the actual elements,
that are inherently deterministic, of the impulse response of
the primary path are not known, the theory can predict the
behaviors in the case of an actual primary path through the
statistic . Furthermore, the effect of the correlation of the
primary path is decreased by that of the realistic secondary
path. The most important point is that the generalized theory
derived in this paper can predict the behaviors in the case of
actual primary and secondary paths.

5. CONCLUSIONS

A theory that predicts the behaviors of the FXLMS algorithm
was derived by using a statistical-mechanical method. Espe-
cially, in this paper, we have generalized the theory to predict
the system behaviors in the case of an actual primary path of
which elements have strong correlations.
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