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ABSTRACT
A marginal version of the Weiss-Weinstein bound (WWB) is
proposed for discrete-time nonlinear filtering. The proposed
bound is calculated analytically for linear Gaussian systems
and approximately for nonlinear systems using a particle fil-
tering scheme. Via simulation studies, it is shown that the
marginal bounds are tighter than their joint counterparts.

Index Terms— Bayesian bounds, Weiss-Weinstein bound,
nonlinear filtering.

1. INTRODUCTION

Consider the following discrete-time nonlinear system

xk+1 = fk(xk, vk), (1a)

zk = hk(xk, wk), (1b)

where,xk ∈ R
nx is the state vector at discrete timek and

zk ∈ R
nz is the measurement vector, andfk(·) andhk(·) are

in general nonlinear mappings. The process and measurement
noise vectorsvk ∈ R

nv andwk ∈ R
nw are mutually inde-

pendent white processes, assumed independent of the initial
statex0. In nonlinear filtering, one is interested in estimat-
ing the current statexk from the sequence of measurements
Zk = {zl}

k
l=1. In a Bayesian framework, this is equivalent to

recursively computing the posterior densityp(xk|Zk), from
which an optimal estimate with respect to any criterion can
be extracted.
Unfortunately, the posterior pdf for the most general model
(1b) is not available in closed form. Here, one has to re-
sort to numerical approximations and the particle filter has
become one of the most popular techniques due to its asymp-
totic properties in representing the posterior pdf [1–5]. For
discrete-time linear systems with additive Gaussian noise

xk+1 = F · xk + vk, vk ∼ N (0, Qk), (2a)

zk = C · xk + wk, wk ∼ N (0, Rk), (2b)

a closed form solution for the posterior pdf is available, which
is Gaussianp(xk|Zk) = N (xk; x̂k|k(Zk), P̂k|k). The entities
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x̂k|k(Zk) and P̂k|k are the state estimate and the covariance
matrix provided by the celebrated Kalman filter.
While the area of developing estimators for the nonlinear
filtering problem is relatively mature [4, 6, 7], the area of
deriving corresponding fundamental performance limits is
evolving rather slowly. The most preferred tool of assessing
performance limits in a Bayesian context is the Bayesian
Craḿer-Rao lower bound (BCRB) [8, 9]. An important but
much less explored alternative is to use the other Bayesian
bounds in the literature, namely, Weiss-Weinstein, Bhat-
tacharyya, and Bobrovsky-Zakai lower bounds [9]. All of the
lower bounds mentioned above belong to a larger family of
Bayesian bounds that is known today as the Weiss-Weinstein
family of Bayesian bounds [10]. In the nonlinear filter-
ing context, the recursive formulation of BCRB presented
by Tichavsḱy et al. was long considered as the state-of-the
art [11], even though a couple of tighter alternatives exist[12].
The idea of [11] is to formulate the information matrix based
on the joint densityp(Xk, Zk) of the state and measurement
sequence whereXk = {xl}

k
l=1, from which the BCRB for

estimatingxk can be extracted from the lower-right corner.
This technique has been then adopted for the other Bayesian
bounds in the Weiss-Weinstein family [13–15].
In this paper, a marginal version of the Weiss-Weinstein
bound (WWB) is proposed using the marginal pdfp(xk, Zk) =
p(xk|Zk) ×p(Zk). Similar to the BCRB case, the resulting
bound turns out to be tighter after the marginalization [16].
For the linear Gaussian case, closed form solutions exist
which exactly show this behavior. For nonlinear systems,
a particle filter approximation is suggested, and based on a
linear example with non-Gaussian noise it is shown that the
same conclusions can be drawn.

2. GENERAL WEISS-WEINSTEIN BOUNDS

Weiss-Weinstein family of lower bounds is defined using
the so-calledscore functions{ψi(x, z)}

r
i=1 which satisfy the

propertyEx[ψi(x, z)] = 0 for i = 1, . . . , r and for allz. Ex[·]
denotes the expectation operator with respect to the variable
x. The corresponding lower bounds in the family are then
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given as

Ex,z{[x− x̂(z)][x− x̂(z)]T )} ≥ V G−1V T , (3)

where the elements of the matricesV ∈ R
nx×r andG ∈ R

r×r

are defined as

[V ]i,j , Ex,z[xiψj(x, z)], [G]i,j , Ex,z[ψi(x, z)ψj(x, z)],

with the notation[·]i,j denoting the element of the argument
matrix corresponding to theith row andjth column andxi
being theith element ofx.

Weiss-Weinstein bound is obtained using the specific se-
lection of the score functions given below

ψi(x, z) = Lsi(z, x+ hi, x)− L1−si(z, x− hi, x), (4)

for i = 1, . . . , r where

L(z, x+ h, x) ,
p(x+ h, z)

p(x, z)
=
p(x+ h|z)

p(x|z)
. (5)

The vectors{hi ∈ R
nx}ri=1, which are column vectors called

test points, and the scalars{si}ri=1 are generally free variables
that have to be optimized. In the following, we fixsi = 1/2,
i = 1, . . . , r according to the suggestion given in [10]. The
mean square error matrix can be then lower bounded by

Ex,z{[x− x̂(z)][x− x̂(z)]T )} ≥ HJ−1HT , (6)

with matrixH ∈ R
r×r given byH = [ h1 h2 · · · hr ].

The elements of the matrixJ ∈ R
r×r can be written as fol-

lows

[J ]i,j = 2 ·
eµ(hi−hj) − eµ(hi+hj)

eµ(hi)+µ(hj)
, (7)

where µ(h) is known as the negative non-metric Bhat-
tacharyya distance between the densitiesp(x, z) andp(x +
h, z), which is defined as

µ(h) = ln
(

Ex,z{
√

L(z, x+ h, x)}
)

(8)

= ln

(∫ ∫
√

p(x+ h, z)p(x, z) dx dz

)

. (9)

In order to efficiently compute the WWB in closed form, an-
alytical solutions for the expressionµ(h) should be found.

3. JOINT WEISS-WEINSTEIN BOUND

The joint Weiss-Weinstein bound (J-WWB) is derived from
the joint densityp(Xk, Zk). It provides a lower bound on
the MSE matrix for the sequence of statesXk rather than the
current statexk, and is given as follows

E{[Xk−X̂k(Zk)][Xk−X̂k(Zk)]
T )} ≥ H0:kJ

−1
0:kH

T
0:k, (10)

where the expectation is taken with respect top(Xk, Zk). In
filtering applications, the MSE matrix of the current statexk

is of interest, which is located in the lower-right corner ofthe
augmented MSE matrix. By choosingH0:k to be block diag-
onal and by making use of the specific structure of the matrix
J0:k, it has been shown in [13–15] that the inverse located
in the lower-right corner of[J0:k]−1 can be computed recur-
sively for allk = 0, 1, . . . , according to the following update
formulae

Ak = D11
k+1 −D10

k+1[Ak−1]
−1D01

k+1, (11a)

J̃k+1 = D22
k+1 −D21

k+1[Ak]
−1D12

k+1, (11b)

with the initial condition[A−1]
−1 = 0. The details on how

the matrix elements[Dmn
k+1]i,j with m,n ∈ {0, 1, 2} can be

computed are not given here due to space constraints and can
be found in [14]. As a result, a lower bound for the MSE
matrix of the current statexk is given as

E{[xk − x̂k(Zk)][xk − x̂k(Zk)]
T )} ≥ HkJ̃

−1
k HT

k , (12)

where the expectation is taken with respect top(xk, Zk). In
the special case of linear state-space models with additive
Gaussian noise structure, it has been shown in [15] that the
matrix J̃k+1 can be evaluated in closed form. In this case,
J̃k+1 for k ≥ 1 can be evaluated recursively

J̃k+1 = D22
k+1 −D21

k+1[D
11
k+1 + J̃k −B11

k ]−1D12
k+1, (13)

with B11
0 = J̃0 andB11

k = D22
k+1. For comparison pur-

poses, the individual matrix elements[Dmn
k+1]i,j correspond-

ing to this case are repeated here:

[D11
k+1]i,j = 4 sinh

[
1

4
hTk,i

(
FTQ−1

k F

+CTR−1
k C +Q−1

k−1

)
hk,j

]

, (14a)

[D12
k+1]i,j = −4 sinh

[
1

4
hTk,iF

TQ−1
k hk+1,j

]

= [D21
k+1]j,i,

(14b)

[D22
k+1]i,j = 4 sinh

[
1

4
hTk+1,i

(
CTR−1

k+1C +Q−1
k

)
hk+1,j

]

.

(14c)

The recursions are initiated at timek = 0 with

[D11
1 ]i,j = 4 sinh

[
1

4
hT0,i

(

FTQ−1
0 F + P−1

0|0

)

h0,j

]

, (14d)

and the initial matrixJ̃0 is given by

[J̃0]i,j = 4 sinh

[
1

4
hT0,iP

−1
0|0 h0,j

]

. (14e)

4. MARGINAL WEISS-WEINSTEIN BOUND

The marginal Weiss-Weinstein bound (M-WWB) is derived
from the marginal densityp(xk, Zk) and hence from the pos-
teriorp(xk|Zk). It provides a lower bound on the MSE matrix

3488



for the current statexk directly, and is given as follows

Exk,Zk
{[xk−x̂k(Zk)][xk−x̂k(Zk)]

T )} ≥HkJ
−1
k HT

k . (15)

4.1. Linear Systems

The M-WWB bound can be computed analytically thanks to
the availability of a closed-form expression of the posterior
densityp(xk|Zk) = N (xk; x̂k|k(Zk), P̂k|k). The computa-

tion of P̂k|k can be expressed recursively using the following
well-known formulas:

P̂k|k−1 = FP̂k−1|k−1F
T +Qk, (16a)

P̂k|k = P̂k|k−1 −KkCP̂k|k−1, (16b)

Kk = P̂k|k−1C
T (CP̂k|k−1C

T +Rk)
−1, (16c)

where the recursions are initiated withP0|0. For this case, the
following Lemma applies.

Lemma 1. For linear additive Gaussian systems, the negative
non-metric Bhattacharyya distance is given by

µ(h) = −
1

8
hT P̂−1

k|kh. (17)

Proof. See Appendix

Inserting (17) into (7) and performing some straightfor-
ward algebraic manipulations, the (i, j)-th element of the ma-
trix Jk finally can be written as

[Jk]i,j = 4 · sinh

(
1

4
hTk,iP̂

−1
k|khk,j

)

. (18)

By inspection, it is obvious that the matrix elementsJ̃k de-
rived from the joint density approach are different to the ma-
trix elementsJk obtained from the marginal density approach.
The fact thatJ̃k is computed recursively introduces some tem-
poral interdependency between the test points, while for the
computation ofJk there is no such dependency. Hence, de-
spite the lower computational complexity with whichJk can
be evaluated compared tõJk, the optimization of[Jk]i,j via
test points also seems to be much more easier.
In case we selectHk = ǫ · Inx

, with ǫ → 0 andInx
denotes

identity matrix, then this implieshk,i, hk,j → 0 and we can
simplify sinh(x) ≈ x, yielding [Jk]i,j = ǫ2[P̂−1

k|k ]i,j . Insert-
ing the result into (15) and considering the particular selec-
tion ofHk, the marginal WWB is given bŷPk|k which is the
BCRB for discrete-time linear filtering.

4.2. Nonlinear Systems

For nonlinear systems, closed-form expressions are available
for neither M-WWB nor the posteriorp(xk|Zk). However, it
is still possible to numerically approximate relevant quantities
and compute an approximate marginal bound. One can use a

particle filter (PF) to approximate the posterior [2, 4, 5]. In
particle filters, the posterior density of the statep(xk|Zk) is
approximated by an empirical density ofN particles and their
weights as follows

p̂(xk|Zk) =

N∑

p=1

w
(p)
k δ(xk − x

(p)
k ), (19)

wherex(p)k is a sample state at timek andw(p)
k is its cor-

responding weight. The approximate posteriorp̂(xk|Zk)
is propagated using the sequential importance sampling
scheme. In this scheme, at any timek, first the samples,
a.k.a. particles, are generated from a proposal distribution
q(xk|xk−1, zk) and then the particle weights are updated
according to

w
(p)
k ∝ w

(p)
k−1

p(zk|x
(p)
k )p(x

(p)
k |x

(p)
k−1)

q(x
(p)
k |x

(p)
k−1, zk)

. (20)

Particles are also resampled at required time instants to reduce
the variance in the weights. By using the approximate density
in (19), one can approximateµ(h) and thusJk to compute the
marginal bound. First, the cumbersome expectation appear-
ing in (7) is approximated via Monte Carlo (MC) integration
as follows

E{L1/2(Zk, xk+h, xk)} ≈
1

Nmc

Nmc∑

l=1

√

L(Z
(l)
k , x

(l)
k + h, x

(l)
k ),

(21)
wherex(l)k , Z

(l)
k with l = 1, . . . , Nmc are independent and

identically distributed (i.i.d.) random vectors such that
(x

(l)
k , Z

(l)
k ) ∼ p(xk, Zk) holds. One can rewrite the pdf

ratio as

L(Zk, xk + h, xk) =
p(zk|xk + h)p̂(xk + h|Zk−1)

p(zk|xk)p̂(xk|Zk−1)
. (22)

An approximation of the prediction densitŷp(xk + h|Zk−1)
can be computed by using the particle approximation (19) at
timek − 1 as follows

p̂(xk + h|Zk−1) =

∫

p(xk + h|xk−1)p̂(xk−1|Zk−1)dxk−1

≈

Npf∑

p=1

w
(p)
k−1p(xk + h|x

(p)
k−1). (23)

By plugging in the above particle approximation into (22) and
averaging over the MC runs as in (21), we can computeµ̂(h)
for nonlinear systems.

5. SIMULATIONS

We consider the following simple one-dimensional linear
state space model where it is possible to compute the analyt-
ical expressions for different bounds [15] and illustrate their
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(b) k = 19

Fig. 1. MSE vs. test pointh for different Bayesian bounds

differences with the M-WWB

xk+1 = xk + wk, (24a)

yk = xk + vk. (24b)

Two examples are considered. In the first example, we as-
sume that the prior and the noise terms are zero-mean Gaus-
sian with variancesσ2

0 = 0.4, σ2
v = 0.4, σ2

w = 0.4. In
the second example, the noise and prior are assumed to be
exponential withµ0 = σ0, µv = σv, µw = σw, where
the exponential pdf with scale parameterµ is defined as:
p(n) = 1/µ · exp−n/µ, for n ≥ 0, and elsep(n) = 0.
Notice that, in the second case, it is not possible to com-
pute M-WWB analytically and hence a PF approximation
is required. The PF-based M-WWB is obtained by averag-
ing overNmc = 5000 MC runs where the bootstrap PF [1]
usesNpf = 500 particles except for the computation of the
bound atk = 19 for the exponential distribution case where
Npf = 10000 particles are used andNmc = 1000 MC runs are
simulated. For the ease of exposition, we assume that the test
pointsh are held fixed at each time step. In Fig. 1, the impact
of the test pointh on the different bounds at two different time
steps is shownk = 1 andk = 19 [15]. It can be observed that
the BCRB (G) assuming Gaussian prior and noise provide the
tightest bound, which is also the optimal bound. The analyt-
ical J-WWB (G) and M-WWB (G) are generally looser, but
approach the BCRB (G) whenh→ 0. It can be also observed
that the M-WWB (G) is tighter than the J-WWB (G) for this
example and the chosen test points. For verification purposes,
we also included the results of the PF implementation of the
M-WWB for the linear Gaussian model, termed MM-WWB
(approx). The approximation shows good agreement with the
analytical results, but could be improved by increasing the
number of MC runs and/or particles.
For the case of linear systems with exponential noise and
prior, the BCRB does not exist because the exponential dis-
tribution violates the regularity conditions [9]. The M-WWB
(E) obtained from the PF implementation is compared to the
analytical J-WWB (E) presented in [15]. It can be observed
that the M-WWB (E) is again tighter than the J-WWB (E).
Increasing the number of MC runs and/or particles will yield
smoother results. It is nevertheless noted, that using the PF

with densities having finite support is often critical, since
a significant number of particles is assigned a zero weight
in the PF measurement update step. The strengths of the
PF-based M-WWB implementation will pay off in situations
where densities have infinite support, where the variance of
the process and measurement noise are not too small, and
where the state-space dimension is small.

6. CONCLUSION

In this paper, a marginal Weiss-Weinstein bound (WWB) is
proposed for discrete-time nonlinear filtering. It is shownthat
for linear Gaussian systems the marginal WWB can be evalu-
ated analytically and for nonlinear systems approximated nu-
merically using a particle filtering approach. Results of two
examples show that the marginal WWB is tighter than the
joint WBB. Potential drawbacks of the PF-based approach are
highlighted, as well as conditions are given, where the PF-
implementation is expected to give satisfactory results with
reasonable computational complexity.

7. APPENDIX

Application of Bayes’ rule to the joint densityp(xk, Zk) =
p(xk|Zk)p(Zk) and inserting the result into (9), yields

µ(h) = ln

(∫ ∫
√

p(xk + h|Zk)p(xk|Zk)p(Zk) dxk dZk

)

.

(25)
The expression under the square-root can be simplified by
making using of the following identity

N (x;x1, P1)N (x;x2, P2) = N (x2;x1, P1+P2)N (x; x̄, P̄ ),

wherex̄ = x1 + P1(P1 + P2)
−1(x2 − x1) and P̄ = P1 −

P1(P1 + P2)
−1P1. As a result (25), can be rewritten as

µ(h) = ln

(√

N (h; 0, 2P̂k|k)

×

∫ ∫ √

N (xk; x̂k|k(Zk)− h/2, P̂k|k/2)p(Zk) dxk dZk

)

= ln







√

N (h; 0, 2P̂k|k)

√

(2π)n|P̂k|k|
√

√

(2π)n|P̂k|k/2|

×

∫ [∫

N (xk; x̂k|k(Zk)− h/2, P̂k|k) dxk

]

︸ ︷︷ ︸

=1

p(Zk) dZk







= −
1

8
hT P̂−1

k|kh.
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