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ABSTRACT Ty (Z)) and Pk‘k are the state estimate and the covariance
A marginal version of the Weiss-Weinstein bound (WWB) ismatrix provided by the celebrated Kalman filter.
proposed for discrete-time nonlinear filtering. The praubs While the area of developing estimators for the nonlinear
bound is calculated analytically for linear Gaussian syste filtering problem is relatively mature [4, 6, 7], the area of
and approximately for nonlinear systems using a particle filderiving corresponding fundamental performance limits is
tering scheme. Via simulation studies, it is shown that the@volving rather slowly. The most preferred tool of assegsin

marginal bounds are tighter than their joint counterparts. ~ performance limits in a Bayesian context is the Bayesian
. . . . Craner-Rao lower bound (BCRB) [8,9]. An important but
I ndex Terms— Bayesian bounds, Weiss-Weinstein boundmuch less explored alternative is to use the other Bayesian

nonlinear filtering. bounds in the literature, namely, Weiss-Weinstein, Bhat-
tacharyya, and Bobrovsky-Zakai lower bounds [9]. All of the

1. INTRODUCTION lower bounds mentioned above belong to a larger family of

) ] ) ) ] Bayesian bounds that is known today as the Weiss-Weinstein
Consider the following discrete-time nonlinear system family of Bayesian bounds [10]. In the nonlinear filter-
Tei1 = ful2e,ve), (1a) ing context, the recursive formulation of BCRB presented

o = hi(zewe) (1b) by Tichavsk et al. was long considered as th_e state_-of-the
F KAk Tk /s art [11], even though a couple of tighter alternatives gia}.
where,z;, € R™ is the state vector at discrete tinkeand  The idea of [11] is to formulate the information matrix based
21 € R™= is the measurement vector, afid-) andhy(-) are  on the joint density(X, Z;.) of the state and measurement
in general nonlinear mappings. The process and measuremegguence wher&,, = {x;}¥_,, from which the BCRB for
noise vectors, € R™ andw, € R™ are mutually inde- estimatingz;, can be extracted from the lower-right corner.
pendent white processes, assumed independent of thé initiBhis technique has been then adopted for the other Bayesian
statexy. In nonlinear filtering, one is interested in estimat-bounds in the Weiss-Weinstein family [13-15].
ing the current state, from the sequence of measurementsin this paper, a marginal version of the Weiss-Weinstein
Z, = {z1}F_,. In a Bayesian framework, this is equivalent to bound (WWB) is proposed using the marginal pdf;, Z.) =
recursively computing the posterior densityc, | Zy), from  p(ax|Zi) xp(Zy). Similar to the BCRB case, the resulting
which an optimal estimate with respect to any criterion carbound turns out to be tighter after the marginalization [16]
be extracted. For the linear Gaussian case, closed form solutions exist
Unfortunately, the posterior pdf for the most general modeWwhich exactly show this behavior. For nonlinear systems,
(1b) is not available in closed form. Here, one has to rea particle filter approximation is suggested, and based on a
sort to numerical approximations and the particle filter hadinear example with non-Gaussian noise it is shown that the
become one of the most popular techniques due to its asympame conclusions can be drawn.
totic properties in representing the posterior pdf [1-5¢r F
discrete-time linear systems with additive Gaussian noise

Tpr1 = F-xp+og, o N./\[(O, Qk)7 (2&)

2z = Crap+wg, wp~N(0,Rg), (2b) Weiss-Weinstein family of lower bounds is defined using
the so-calledscore functiongv; (x, )}/, which satisfy the
propertyE, [;(x,z)] =0fori =1,...,randforallz. E,[]
denotes the expectation operator with respect to the \ariab
Thanks to XYZ agency for funding. x. The corresponding lower bounds in the family are then

2. GENERAL WEISS-WEINSTEIN BOUNDS

a closed form solution for the posterior pdf is availableiahh
is Gaussiam(z|Zy) = N (z; @x)x(Zk), Prji). The entities
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given as

[Em,z{[x - (3)

where the elements of the matridéss R"=*" andG € R"*"
are defined as

V]ij £ Euzlri(z, 2)],

#(2)]le - 2(2)]")} 2 VGV,

[Glij & Euz[ti(x, 2)¢5 (2, 2)],

with the notation[-]; ; denoting the element of the argument

matrix corresponding to th&h row and;th column andx;
being theith element of.

Weiss-Weinstein bound is obtained using the specific se
lection of the score functions given below

Vi(x,2) = L (2,2 + hiyx) — L' ™% (2,2 — hs,z),  (4)
fori=1,...,r where
Liwt ) & T2 _plathls)
5 ) p(a)72) p(m|z)

The vectorg(h; € R"=}7_,, which are column vectors called
test pointsand the scalargs; }7_, are generally free variables
that have to be optimized. In the following, we fix=1/2,

1 =1,.
mean square error matrix can be then lower bounded by

(6)

with matrix H € R"*" givenbyH = [ hy he hy .
The elements of the matriX € R"*" can be written as fol-
lows

Euedlo = 8w — 327} 2 HIHT,

6""(]” —hj) _ ejl,(hiJrhj)

em(hi)+u(hy) ’

()i = @)

where p(h) is known as the negative non-metric Bhat-

tacharyya distance between the densitiés, z) andp(z +
h, z), which is defined as

ph) = n(Euo{y/Ia+ho)))

®)

In order to efficiently compute the WWB in closed form, an-

alytical solutions for the expressigrih) should be found.

3. JOINT WEISS-WEINSTEIN BOUND

The joint Weiss-Weinstein bound (J-WWB) is derived from

the joint densityp(Xx, Zx). It provides a lower bound on
the MSE matrix for the sequence of stafég rather than the
current stater;, and is given as follows

E{[ X5 — X5 (Z1)][ X — X (Z1)]")} > HouJ g Hig, (10)

where the expectation is taken with respecpt&, Z; ). In
filtering applications, the MSE matrix of the current staje
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,r according to the suggestion given in [10]. The Jis1 =

is of interest, which is located in the lower-right cornetloé
augmented MSE matrix. By choositid,.; to be block diag-
onal and by making use of the specific structure of the matrix
Jo.k, it has been shown in [13-15] that the inverse located
in the lower-right corner ofJy.,] ! can be computed recur-
sively for allk = 0,1, ..., according to the following update
formulae

Ay, (11a)

(11b)

k+1[Ak 1} k+17
DI%EH[Ak] 1Dk+1

Dyiy —
22
Dk+1

Jri1
with the initial condition[4_;]=* = 0. The details on how
the matrix eIement{aDkH}” with m,n € {0,1,2} can be
computed are not given here due to space constraints and can

be found in [14]. As a result, a lower bound for the MSE
matrix of the current statey, is given as

E{[zx — &x(Z0)][zr — &r(Z0)]7)} > HoJ HY,  (12)

where the expectation is taken with respecp(oy, Z). In

the special case of linear state-space models with additive
Gaussian noise structure, it has been shown in [15] that the
matrix jk+1 can be evaluated in closed form. In this case,
jkﬂ for k£ > 1 can be evaluated recursively

= Di%y — DR [Dihs + Je = BT DL, (13)
with B* = J, and B}' = D#2,. For comparison pur-

poses, the individual matrix elemer{;" |; ; correspond-
ing to this case are repeated here:

[ -
[Di}1]i; = 4sinh {ghf,i (FTQIC 1
+CTR'C+ Q) hk,]} , (14a)

. 1 _
[Dk+1}v j = —4sinh {Zhg,iFTlethrl,j} = [Dl%i-l]j.,ia

(14b)

. 1 _ _
[D2 1];,; = 4sinh hhzﬂ’i (CTRHllC +Q; ") hk+1,j:| .
(14c)

The recursions are initiated at tinke= 0 with
1
[Di'];,; = 4sinh {Zhoﬂ (FTQO 'F+ Py, ) ho, ,} (14d)
and the initial matrixJ; is given by

[Jo)i.; = 4sinh [ ho. Py hoj} . (14e)

4. MARGINAL WEISS-WEINSTEIN BOUND

The marginal Weiss-Weinstein bound (M-WWB) is derived
from the marginal density(zy, Z) and hence from the pos-
teriorp(xx| Zx). It provides a lower bound on the MSE matrix



for the current state;, directly, and is given as follows particle filter (PF) to approximate the posterior [2, 4, 5h |
particle filters, the posterior density of the state|Zy) is
Evy zed ok — 2 (Z0))[wx —21(Z1))")} > HyJ ' HYY. (15)  approximated by an empirical density Nfparticles and their
weights as follows

4.1. Linear Systems N

The M-WWB bound can be computed analytically thanks to (k| Zy) = Zwi(f>5(xk — ), 19)
the availability of a closed-form expression of the posteri p=1

densit Zy) = ;@1 (Z1), Pyi). The computa- _ . .
i fyg(acu k)b N(xk’x’a'k’( k), . WIC) ing th fp” __wherez”) is a sample state at time and w'? is its cor-
ion of Py can be expressed recursively using the following, oo o ding weight.  The approximate posterjigis|Zx)

well-known formulas: is propagated using the sequential importance sampling

P« — FP. . FT 16a scheme. I_n this scheme, at any tirhefirst the sar_npl_es,_
k“f ! R k=1lk—1 TQ’“’ (162) a.k.a. particles, are generated from a proposal distabuti
Py = Prp—1 — KpCPrjr—1, (16b)  g(xy|zr_1,2:) and then the particle weights are updated
Ki = Py aCT(CPyx1CT +Ry) 7", (16c)  accordingto
. o . (2 ‘x(ﬁ)) (T(P)‘x(l)) )
where the recursions are initiated with,. For this case, the w®? o w® P\Z|Z) " )P\Ty " [T —1 ) (20)
following Lemma applies. k et q@P |z )
Lemma 1. For linear additive Gaussian systems, the negativeParticles are also resampled at required time instantsltaes
non-metric Bhattacharyya distance is given by the variance in the weights. By using the approximate dgnsit
1 in (19), one can approximatg k) and thusJ;, to compute the
w(h) = —7th3,c‘“ih. (17)  marginal bound. First, the cumbersome expectation appear-
8 ing in (7) is approximated via Monte Carlo (MC) integration
Proof. See Appendix 0  asfollows
ch
Inserting (17) into (7) and performing some straightfor- 1/2 1 a0 ) 0)
) . . E{L/*(Z h, i)} ~ L(Z h
ward algebraic manipulations, the £)-th element of the ma- { (Zs oot wc)} Nmc ; \/ (Zai o),
trix Jj, finally can be written as B (21)

wherexg),Z,(cl) with I = 1,..., Nyc are independent and
hk_j) (18) identically distributed (i.i.d.) random vectors such that
(x,(cl),Z,il)) ~ p(xg, Z,) holds. One can rewrite the pdf
ratio as

. 1 A
[Jk]i,j = 4 - sinh (th’ipk‘;

By inspection, it is obvious that the matrix elemedjsde-
rived from the joint density approach are different to the ma
trix elementsJ;, obtained from the marginal density approach. L
The fact that/,, is computed recursively introduces some tem- o . .
poral interdependency between the test points, while fer thAN @Pproximation of the prediction densipfx. + h|Zy.1)
computation ofJ, there is no such dependency. Hence, de€an be computed by using the particle approximation (19) at

spite the lower computational complexity with whidh can ~ fimek — 1 as follows

p(zi|re + h)p(xy + h|Zx—1)

Zi, T + h,x)) = -
G+ hooe) = = e P (@l Zeer)

. (22)

be evaluated compared th, the optimization oflJ;); ; via ) R

test points also seems to be much more easier. p(ay +h|Zy-1) = /p(xk + hlzk—1)p(r—1|Zk—1)drr—1
In case we seledtl, = ¢ - I,,_, with e — 0 andI,,, denotes N

|d.ent|_ty matrlx, then th!s |mplleﬁk,i7 hi.j 2—>A E)land we can ~ sz(f:)w(ffk + h|$]@1). (23)
simplify sinh(z) ~ z, yielding [J];; = € [Pk‘k]i’j. Insert- =1

ing the result into (15) and considering the particular cele
tion of Hy, the marginal WWB is given by, which is the
BCRB for discrete-time linear filtering.

By plugging in the above particle approximation into (22¢lan
averaging over the MC runs as in (21), we can compuite
for nonlinear systems.

4.2. Nonlinear Systems
5. SIMULATIONS

For nonlinear systems, closed-form expressions are &laila

for neither M-WWB nor the posterigr(zx|Z;). However, it ~ We consider the following simple one-dimensional linear
is still possible to numerically approximate relevant ditees  state space model where it is possible to compute the analyt-
and compute an approximate marginal bound. One can usda@al expressions for different bounds [15] and illustrdteit
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with densities having finite support is often critical, ®nc

—e—BCRB (G] N ——

02 ;;;m:zv”;“,(‘;)ﬁggp“’*) 025 +§C%§)§G‘;"’ a significant number of particles is assigned a zero weight
L o2 . EE”%’:BE’ Lo E}%g in the PF measurement update step. The strengths of the
Loss X Loss PF-based M-WWB implementation will pay off in situations

01 o1 where densities have infinite support, where the variance of

oos| 2T 005 the process and measurement noise are not too small, and

| i — - | Lol S el where the state-space dimension is small.
@k=1 (b) k=19

6. CONCLUSION

Fig. 1. MSE vs. test poink for different Bayesian bounds |, yhis paper, a marginal Weiss-Weinstein bound (WWB) is

proposed for discrete-time nonlinear filtering. It is shawat

differences with the M-WWB for linear Ggussian systems t_he marginal WWB can be evalu-
ated analytically and for nonlinear systems approximated n
Tpa1 = Tp + W, (24a) merically using a particle filtering approach. Results of tw

examples show that the marginal WWB is tighter than the
joint WBB. Potential drawbacks of the PF-based approach are

Two examples are considered. In the first example, we adlighlighted, as well as conditions are given, where the PF-
sume that the prior and the noise terms are zero-mean GadglPlementation is expected to give satisfactory result wi
sian with variances2 = 0.4, 02 = 0.4, 02 = 0.4. In reasonable computational complexity.

the second example, the noise and prior are assumed to be

exponential withyg = og, oy = 0y, flw = 0w, Where 7. APPENDIX

the exponential pdf with scale parameteris defined as:

p(n) = 1/ - exp—n/p, forn > 0, and elsep(n) = 0.  Application of Bayes’ rule to the joint density(xzy, Zx) =
Notice that, in the second case, it is not possible to comp(7x|Zx)p(Z)) and inserting the result into (9), yields

pute M-WWB analytically and hence a PF approximation

is required. The PF-based M-WWB is obtained by averagy, ) — In (// V(@ + B Ze)p(ar] Z1)p(Zy) day, de) )
ing over Ny = 5000 MC runs where the bootstrap PF [1] . (25)

usesNp = 500 particles except for the computation of the ) R St
bound atk = 19 for the exponential distribution case where The_expre_ssmn under th‘? square-root can be simplified by
Nyt = 10000 particles are used an¥h,. = 1000 MC runs are making using of the following identity

simulated. For the ease of exposition, we assume that the tes,, . B L =B
pointsh are held fixed at each time step. In Fig. 1, the impactﬁ/(x’ w1, PON (@322, Po) = N (@01, PPN (3 7, P),
ofthe.test point on the different bounds at two differenttime \\horez — w1+ Py(Py + Po)~(as — 21) andP = Py —
steps is showk = 1 andk = 19 [15]. It can be observed that Py(P, + P,)~'P,.
the BCRB (G) assuming Gaussian prior and noise provide the

tightest bound, which is also the optimal bound. The analyt- -
ical J-WWB (G) and M-WWB (G) are generally looser, but p(h) = In ( N (h;0,2Py)
approach the BCRB (G) when— 0. It can be also observed
that the M-WWB (G) is tighter than the J-WWB (G) for this  x //\//\/’(xk;.ka(Zk:) - h/Q,PW/Q)p(Zk,)dxk de,>
example and the chosen test points. For verification pugpose 7 -

we also included the results of the PF implementation of the 7

M-WWB for the linear Gaussian model, termed MM-WWB - /N(h;0.2]3k\k) V )" P
(approx). The approximation shows good agreement with the '
analytical results, but could be improved by increasing the
number of MC runs and/or particles.

For the case of linear systems with exponential noise and R
prior, the BCRB does not exist because the exponential dis- X /[/N(zk;f?uk(zk) - h/Q»PMk)dmk} p(Zy) dZ),
tribution violates the regularity conditions [9]. The M-WWB
(E) obtained from the PF implementation is compared to the =1

analytical J-WWB (E) presented in [15]. It can be observed — ,lthk—]ih. [
that the M-WWB (E) is again tighter than the J-WWB (E). 8 |

Increasing the number of MC runs and/or particles will yield

smoother results. It is nevertheless noted, that using fhe P

Yk = Tk + Vg (24Db)

As aresult (25), can be rewritten as

(27T)"\15k\k/2|
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