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ABSTRACT
Tracking problems are usually investigated using the Bayesian
approach. Many practical tracking problems involve some
unknown deterministic nuisance parameters such as the sys-
tem parameters or noise statistical parameters. This paper ad-
dresses the problem of state estimation in linear discrete-time
dynamic systems in the presence of unknown deterministic
system parameters. A Cramér-Rao-type bound on the mean-
sqaure-error (MSE) of the state estimation is introduced. The
bound is based on the concept of risk-unbiasedness and can
be computed recursively. It allows evaluating the optimality
of the estimation procedure. Some sequential estimators for
this problem are proposed such that the estimation procedure
can be considered an on-line technique. Simulation results
show that the proposed bound is asymptotically achieved by
the considered estimators.

Index Terms— Kalman filter, sequential estimation,
Cramér-Rao bound, risk-unbiased bound, MSE

1. INTRODUCTION
Since Kalman’s breakthrough [1], the problem of state esti-
mation in linear and nonlinear systems has been extensively
investigated and various aspects of the problem have been
analyzed. In a survey paper [2], Kailath revisited the problem
of linear sequential estimation and presented a new approach
to the problem based on innovations. Using this approach,
Mehra [3] derived a test for the optimality of a particular
Kalman filter, in sense of the whiteness of the innovations
process, and showed how it can be adjusted when the noise
variances are not precisely known. Since Mehra’s work,
different aspects of the problem of state estimation with
unknown system parameters and statistics have been investi-
gated. In [4, 5], the direct identification of stochastic linear
systems has been reported using the steady-state innovations
model. Estimation of the system state vector in the presence
of unknown deterministic parameters was treated in [6, 7].
Parameter estimation was also treated as a special case of
estimation of state variable via a maximum likelihood based
criterion [8, 9]. The same criterion was used in [10–13] for
estimating the parameters of a linear system. Furthermore,

estimation of the covariances of the driving noise and ob-
servation noise has been considered under the steady-state
assumption [14, 15].

In [16], the simultaneous estimation of the state and the
parameters of a linear dynamic system subject to an arbitrary
known input, a driving noise, and noisy output observations.
The system parameters were treated as unknown determin-
istic parameters, interfering with the estimation of the state
vector. The approach of [16] for parameter estimation was
revisited in a general context [17,18]. However, no analytical
approach has been suggested for evaluating the MSE of state
vector estimation in the presence of the unknown statistics.
Thus, the optimality of the solution in [16] for state vector
estimation has not been verified. Another drawback of this
solution is that it requires the recomputation of the smoothed
values of all the past states. Thus, this approach lacks the
attractivity of sequential estimation. In [19] the scalar model
of [16] was revisited as a special case of an auto-regressive
(AR) model. Two alternatives to the system identification
were applied based on recursive least squares (RLS) [20] and
least mean square (LMS) [21] algorithms.

The problem of state estimation in presence of un-
known system parameters is a special case of the problem
of Bayesian estimation in presence of deterministic nui-
sance parameters. In a recent research [22, 23], this general
problem has been approached using the concept of risk un-
biasedness [24]. The basic ideas of this research has been
presented in [25]. In [22] a new CR-type bound which was
given the name risk-unbiased bound (RUB), is derived for
risk-unbiased estimation of random parameters for a models
with unknown deterministic nuisance parameters, which were
treated as nuisance. The succeeding paper [23] deals with two
alternatives to the conventional minimum MSE (MMSE) es-
timator and the maximum a-posteriori probability (MAP)
estimator using MLE’s for the nuisance parameters. The
discussed estimators are the combined MMSE-maximum
likelihood estimator and the joint MAP-maximum likelihood
estimator [16, 18], which are denoted by MS-ML and JMAP-
ML, respectively. These estimators were shown to be both
asymptotically uniformly mean-unbiased and asymptotically
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uniformly risk-unbiased. Furthermore, the RUB was proven
to be asymptotically tight for the MS-ML estimator, while
mean-unbiased Cramér-Rao-type bounds, such as the hybrid
Cramér-Rao bound [26, 27], are only tight in distinct cases.

In [16] the estimation is considered as optimal in the sense
that the system identification is asymptotically efficient. In
this paper, we wish to examine the optimality of estimators
from the point of view of the state estimation. An estimator
is considered as optimal if its MSE achieves the RUB as the
number of observations increases. We consider the RUB as
a benchmark for asymptotic performance, i.e. for a large
number of observations, because of the properties mentioned
above which are proven in [23]. Some of the proposed es-
timators are adopted from [19] to maintain sequential state
estimation as much as possible.

In this paper, the estimation of the state of a scalar linear
dynamic system subject to a driving noise and noisy output
observations is addressed. A new Bayesian lower bound
on the MSE of the state estimation is derived, based on the
RUB. Several sequential estimation methods are examined
and their optimality is tested, in the sense of their asymptotic
risk-efficiency. That is, how fast (if at all) these estimators
attain the proposed bound.

2. STATEMENT OF THE PROBLEM
Consider a discrete-time linear scalar system modeled by

xn+1 = axn + un, n = 0, . . . , N − 1, (1a)
yn = xn + vn, n = 0, . . . , N, (1b)

where xn is the state of the system at time n, {un}Nn=0 is a
white Gaussian driving noise with un ∼ N (0, σ2

u), a is a de-
terministic unknown system parameter, yn is the observation
at time n, and {vn}N+1

n=0 is a white Gaussian observation noise
with vn ∼ N (0, σ2

v). {un}N−1n=0 , {vn}Nn=0, and the system ini-
tial state, x0 are assumed to be statistically independent, with
x0 ∼ N (0, σ2

0). Note that under these assumptions {xn}Nn=0

and {yn}Nn=0 are jointly Gaussian.
Due to the correlation of the measurements, one can ver-

ify that a closed-form expression to the marginal likelihood
of the measurements after each step is not at hand. This
fact has two consequences. First, a closed-form expression
of the RUB is not available, as it is based on the derivative of
the marginal likelihood of the measurements. Second, com-
puting the MLE of a after each measurement is not feasible
nor tractable. Thus, the MS-ML estimator is not obtainable.
Hence, our goals are to obtain a performance bound on the
MSE on the estimation of the state vector and optimal esti-
mates of the state after each observation, in the absence of the
value of a.

3. MODIFIED RUB
Following the results of [23], we present a modified version
of the RUB in [22] which is based on the joint likelihood
function of the measurements and the system states rather

than the marginal likelihood of the measurements. The new
bound is denoted by MRUB. The estimators for this problem
in Section 4 do not require recomputation of the smoothed
values of all the past states using the updated value of the
estimate of a. Thus, the proposed bound better suits for
predicting the performance of sequential estimators, as it is
based on the joint likelihood function of the measurements
and the system states.

Consider an unknown vector parameterψ = [ϕ,θTr ,θ
T
d ]T ,

where the parameter of interest, ϕ ∈ Ωϕ ⊆ R, is a random
variable, and θr ∈ Ωθr ⊆ RMr and θd ∈ Θd ⊆ RMd are
the vectors of random and deterministic nuisance parameters,
respectively. We are interested to estimate the parameter of
interest ϕ based on the random observation vector y ∈ Ωy.
Let fy,ϕ,θr

(·, ·, ·;θd), fy(·;θd), and fϕ,θr|y(·, ·|y;θd) de-
note the joint, the observation, and the posterior probability
density functions (pdf’s), respectively. The function ϕ̂(y)
is an estimator of ϕ with estimation error eϕ̂ = ϕ̂(y)−ϕ.
Eθ[·] and Eθ[·|y] stand for the expectation operator w.r.t.
fy,ϕ,θr

(·, ·, ·;θd) and fϕ,θr|y(·, ·, ·;θd), respectively. The
column vector of the gradient operator w.r.t. θ is denoted by
∂

∂T θ
, and the Hessian matrix operator w.r.t. θ is denoted by

∂2

∂θ∂T θ
.

Under the MSE criterion, the risk is defined asL(ϕ̂,θdt
) =

Eθdt
[e2ϕ̂], where θdt denotes the true value of θd. If θdt is

known, the MMSE estimator is given by the conditional
mean, ϕ̂MS(y,θdt

) = Eθdt
[ϕ|y]. The estimation error of the

MMSE estimator is eMS(y,θdt
) = ϕ̂MS(x,θdt

)− ϕ. If θdt

is unknown, then ϕ̂MS(x,θdt
) is not a valid estimator of ϕ

and the conventional Bayesian MSE bounds are not tight.
In [25], the estimator ϕ̂(y) was said to be locally risk-

unbiased at θd if

Eθd
[zϕ̂(y,θd),d(y,θd)] = 0M , (2a)

Eθd
[zϕ̂(y,θd)H(y,θd)] = Cdd(θ), (2b)

where

zϕ̂(y,θd) , ϕ̂(y)−ϕ̂MS(y,θd) (3a)

d(y,θd) ,
∂ϕ̂MS(y,θd)

∂Tθd
, (3b)

F(y,θd) ,
∂2ϕ̂MS(y,θd)

∂θd∂Tθd
, (3c)

H(y,θd) , F(y,θd) + d(y,θd)
∂ log fy(y;θd)

∂θd
, (3d)

Cdd(θd) , Eθd

[
d(y,θd)dT (y,θd)

]
, (3e)

and vec(·) denotes the vectorization operation. Then, the
following theorem provides a performance bound for risk-
unbiased estimation.

Theorem 1. Let ϕ̂(y) be a locally risk-unbiased estimator of
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ϕ. Then, under Assumptions 1-6 in [22],

L(ϕ̂,θd) ≥ BMRUB(θd) , Eθd

[
e2MS(y,θd)

]
+

cTd (θd)
[
Ch̃h̃(θd)−Ch̃d(θd)C−1dd(θd)Cdh̃(θd)

]−1
cd(θd),

(4)

where

l(y, ϕ,θr;θd) ,
∂ log fy,ϕ,θr

(y, ϕ,θr;θd)

∂θd
, (5a)

H̃(y,θr,θd) , F(y,θd) + d(y,θd)l(y, ϕ,θr;θd), (5b)

h̃(y,θr,θd) , vec (H(y,θr,θd)) , (5c)

cd(θd) , vec (Cdd(θd)) , (5d)

Ch̃d(θd) , Eθd

[
h̃(y,θr,θd)dT (y,θr,θd)

]
, CT

dh̃
(θ), (5e)

Ch̃h̃(θ) , Eθd

[
h̃(y,θr,θd)h̃T (y,θr,θd)

]
, (5f)

Proof. Under Assumptions 1 and 2 in [22], Lemma 2 in [28]
implies that

Eθd
[l(y, ϕ,θr;θd)|y] =

∂ log fy(y;θd)

∂θd
. (6)

Thus, using the total law of expectation, the left hand side of
(2b) takes the form

Eθd
[zϕ̂(y,θd)H(y,θd)] = Eθd

[Eθd
[zϕ̂(y,θd)H(y,θd)|y]]

= Eθd

[
zϕ̂(y,θd)F(y,θd)+

zϕ̂(y,θd)d(y,θd)Eθd

[
∂ log fy(y;θd)

∂θd

∣∣∣∣y]
]

=

Eθd

[
zϕ̂(y,θd)H̃(y,θr;θd)

]
. (7)

The rest of the proof follows the lines of equations (9)-(13)
in [25] with y, θd and H̃(y,θr;θd) taking the role of x, θ,
and H(y;θ), respectively. �

In terms of the estimation problem in this paper, in or-
der to obtain the MRUB for estimation of xn from {ym}nm=0,
we set ϕ = xn, θr = [x0, . . . , xn−1]

T , θd = a, and y =

[y0, . . . , yn]
T . This stems from the fact that after yn is ob-

tained, the former system states, {xm}n−1m=0, turn into random
nuisance parameters. The obtained expressions for the matri-
ces Cd̃d(θd),Ch̃d(θd), and Ch̃h(θd) are recursive, but are
omitted due to the lack of space.

4. ESTIMATION OF THE STATE
In this section, we propose three schemes for estimation of the
state. According to [2], if a is known, the MMSE estimator

of xn is obtained using the following set of equations:

x̂n+1 = ax̂n +K[n+ 1](yn+1 − ax̂n) (8a)

Kn+1 = (a2Pn + σ2
u)((a2Pn + σ2

u) + σ2
v)−1 (8b)

Pn+1 = (1−Kn)(a2Pn + σ2
u), (8c)

where x̂n is the MMSE estimator of xn given {ym}nm=0, Kn

is the Kalman gain, and Pn is the MMSE for estimation of
xn given {ym}nm=0. If a is unknown, we wish to continue
exploiting (8) by substituting an estimate of a at each step. To
update the estimate of a, information from both the old state
and the new observation has to be integrated. For this pur-
pose, three adaptive approaches are suggested. The first two
are based on [19]. The last approach is suggested to ensure
consistency of the estimate.
1. RLS Estimation-The RLS estimate of a is obtained from

equations (25)-(27) in [19] and is given by

wn =wn−1 +
x̂2n−1
σ2
u + σ2

v

, (9a)

ânRLS
,ân−1RLS

+

x̂n−1(yn − ân−1RLS
x̂n−1)

wn(σ2
u + σ2

v)
, (9b)

wherewn is a weight factor and ânRLS
is the RLS estimate

of a given {ym}nm=0.

2. LMS Estimation-The LMS estimate of a is obtained from
equations (27) and (29) in [19] and is given by

ânLMS
,ân−1RLS

+

sx̂n−1(yn − ân−1LMS
x̂n−1),

(10)

where s is the step size and ânLMS
is the LMS estimate of

a given {ym}nm=0.

3. CC Estimation-The correlation coefficient (CC) estimate
of a is based on equation (3.13) in [16]. This equation
implies that the estimation of a after each step requires
recomputation of the smoothed values of all the past states.
Thus, the method of [16] is computationally demanding.
However, we suggest using the following substance. Let

pn , pn−1 + ynyn−1, (11a)

qn , qn−1 + y2n−1 − σ2
v , (11b)

ânCC
,
pn
qn
, (11c)

where p and q are two recursively updated sums and ânCC

is the CC estimate of a given {ym}nm=0. It is based on
the correlation coefficient of each two successive obser-
vations. Let the symbols →

p
and →

as
denote convergence

in probability and almost sure convergence, respectively.
The next proposition suggests the CC estimate is strongly
consistent.
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Proposition 2.
ânCC

→
as
a (12)

Proof. Equation (1) implies that for k = 1, . . . , n− 1

yk+1yk =(axk + uk + vk+1)(xk + vk)

=ax2k + axkvk + ukxk + ukvk+

vk+1xk + vk+1vk, (13a)

ykyk =(xk + vk)2 = x2k + v2k + 2xkvk. (13b)

Following (11a), by taking the time-average of (13a) one
obtains

1

n
pn =

1

n

n−1∑
k=0

yk+1yk→
as

a

n

n−1∑
k=0

x2k, (14)

where the convergence stems from the whiteness of {vk}n−1k=0

and {uk}n−1k=0 , from their statistical independence, and
from the Gaussian character of the model in (1). Simi-
larly, following (11b), by taking the time-average of (13b)
one obtains

1

n
qn =

1

n

n−1∑
k=0

(ykyk − σ2
v)→

as

1

n

n−1∑
k=0

x2k, (15)

where the convergence stems from the whiteness and the
Gaussian distribution of {vk}n−1k=0 , which implies that
1
n

∑n−1
k=0 v

2
k→asσ

2
v . The properties of almost sure conver-

gence in [29] implies that subtraction of σ2
v from both

sides of (15) and division of (14) by the obtained expres-
sion yields (12). �

By substituting the estimates of a from (9b), (10), and (11)
after each step into (8a) instead of a, the MS-RLS, the MS-
LMS, and the MS-CC estimators are obtained.

5. EXPERIMENTAL VALIDATION

The MSE of the MS-RLS and the MS-CC, the MMSE, and
the MRUB versus n are presented in Fig. 1. The MSE of
the MS-LMS appeared to diverge. Thus, it is not presented.
The MSE was evaluated using 10,000 Monte-Carlo simula-
tions with σu = 1, σv = 0.5, σ0 = 1, and a = 1. While
the MMSE is achievable only if a is known, the MRUB pro-
vides lower bound for the MSE of the estimators for all sam-
ple sizes. Even though the system is instable, the consistency
of ânCC

yields convergence of the MSE to the MRUB. The
MS-RLS yields similar results.

6. CONCLUSION

In this paper, the problem of state estimation in a linear
discrete-time dynamic system with an unknown system pa-
rameter is explored. A Cramér-Rao-type bound, named
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Fig. 1. The MMSE, MRUB, and MSE of MS-RLS and MS-
CC.

MRUB, is developed for the MSE of random parameter
estimation in the presence of detrerministic and random
nuisance parameters was . The proposed bound assumes
risk-unbiasedness which is more appropriate for the case of
unknown system parameters. Three adaptive sequential esti-
mators are explored and their performance is compared to the
MRUB through simulations.

The simulations illustare the potential of the MRUB and
the parameter estimation methodology of this paper. As a
topic of further research, the MRUB can be implemented
for models of higher complexity, such as state estimation in
vector models and higher order AR models.
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