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ABSTRACT to-Noise Ratio (SNR), and cannot predict the so-calledstiot (i.e.
large errors) on estimator mean square error (MSE) in noegalies-
timation problems. This limitation can be overcome by réagrto
ther hybrid lower bounds, e.g. the Hybrid Barankin Boun@®)l
4], the Hybrid Barankin/Weiss-Weinstein bound (HBWWB] (&
the Hybrid Barankin/Ziv-Zakai bound (HBZZB) [6]. Unfortately,
the computational cost of these hybrid "large-error” baurslpro-
hibitive in most applications when the number of unknowrapae-
ters increases. Therefore, provided that one keeps in inend CRB

In statistical signal processing, hybrid parameter estonarefers

to the case where the parameters vector to estimate cortaihs
non-random and random parameters. Numerous works havensho
the versatility of deterministic constrained Cramér-Rexund for
estimation performance analysis and design of a system af me
surement. However in many systems both random and non{rando
parameters may occur simultaneously. In this communicatice
propose a constrained hybrid lower bound which take inteaectc =27 o .
of equality constraint on deterministic parameters. Thefulsess limitations, the HCRB is still a lower bound of great interfs sys-

of the proposed bound is illustrated with an application adar €™M analysis and design in the asymptotic region.
Doppler estimation As mentioned in the seminal paper [7] for deterministic para

) . ) | eter estimation, the standard form of the CRB is derived utiue
Index Terms— Parameter estimation, hybrid Crameér-Rao jmpjicit assumption that the parameter space is an operesati™.

bounds, equality constraints However, in many applications, the vector of unknown paransds
constrained to lie in a proper non-open subset of the orligiaeam-
1. INTRODUCTION eter space. Since then, numerous works [8] have been detmted

extend the results introduced in [7]: 1) by providing uséédhnical

While Bayesian or non-Bayesian estimation algorithms aigely  results such as a general reparameterization inequatittherequiv-
used in statistical signal processing, the techniqueaalrid esti-  alence between parameterization change and equalityraonist 2)
mation has been developed more recently and suffers frotativee by studying the CRB modified by constraints either requingdhe
lack of results. Hybrid parameters mean the parameter@vézt model or required to solve identifiability issues; 3) by istigating
estimate contains both non-random and random paramettrsawi the use of parameters constraints from a different perspedhe
known prior probability density functions (p.d.f.). Howesythe hy-  value of side 4 priori) information on estimation performance. All
brid estimation framework is not just a simple concatematibthe  these works have shown the versatility of deterministicst@ined
Bayesian and non-Bayesian techniques. Indeed, new estilmas  Cramér-Rao bound (CCRB) for estimation performance aiggnd
to be derived as one can no longer use the Maximum Likelihaed E design of a system of measurement.
timator (MLE) for the non-Bayesian part and the MaximArRoste- However not all system of measurement can be adequately mod-
riori estimator (MAP) for the Bayesian part since the parameters a gjled by resorting to deterministic parameters only, sinath ran-
generally statistically linked. Similarly, performanceadysis meth-  gom and non-random parameters may occur simultaneouslg On
ods of such estimators have to be modified accordingly, wisite  can cite, for example, the Gaussian generalized linear higHer-
aim of hybrid lower bounds. ' _ ray shape calibration [1], time-delay estimation in radgnal [4],

Signal processing community generally use the Hybrid @am” phase estimation in binary phase-shift keying transmisisi@ non-
Rao Bound (HCRB) [1] for which some asymptotic achievapilit gata-aided context [10], phase estimation of QAM modulatgdals
results [2] are known. The HCRB, as well as the classical CRBJ[11], cisoid frequency estimation [12], joint estimatiohtbe pair
is known to be simple to obtain for various problems (see Rart gynamic carrier phase/Doppler shift and the time-delay digital
of [3]) but suffers from some drawbacks. Indeed, these bwmd  receiver [13], parameters estimation in long-code DS/CD8§A-
asymptotically tight only, in terms of number of samples @@l tems [14], bearing estimation for deformed towed arraysénfluid

This work has been partially supported by the European Nétabex- mechanics con_text [15]. Itis thgrgfo_re the aim of this papepr(_)-
cellence NEWCOM#, bypthe iC)(I)DIEFiJnstitute?/research F;)roq'neécthe IDEX  Vide an extension of the deterministic CCRB [16] to the hgtpa-

Paris-Saclay, by the DGA/DGCIS and by the Display-Mastsdproject of ~ rameter context yielding the Constrained HCRB (CHCRB).hiis t
CNRS. paper, we propose the CHCRB in the multivariate case for gkie e

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 3472 ICASSP 2015



mation of random and non-random parameters with a set ofigqua Any unbiased estimators satisfies the following relatigmsfor any
constraints. The usefulness of the CHCRB is illustratedh wit ap-  integeri € [|1; D + R|], one has:

plication to radar Doppler estimation.
/ / (0 (x) — 9) 7()“"6’,3“0‘1) dxd0,
rR J N ‘

= EX,BT;G(I [0 (X) - 0] + EX,BT:Od [aagi (0 (X) - 0>]
In deterministic parameter estimation, the CCRB has praeamse- =0+e;,

fulness for estimation performance analysis and design sfsa .

tem of measurement by exploiting constraints between petens  Wheree: is a vector such thafe;}; = 1 and{ei}
to estimate. However, some systems of measurement canadebe {e;}; denotes the*"
quately modelled by resorting to deterministic paramedatg since . % 0f (x,0.:0
both random and non-random parameters may occur simuliatyeo / / <9 (x) — 9) xvi%vd)dxdgr =Ipir (6)
Therefore the purpose of the present paper is to extendkingtiato J rEJ N 00

account of equality constraint on deterministic paransetethe hy-
brid parameters context via the HCRB.

2. RELATION TO PRIOR WORK

iz = 0 where
element of the vectas;. Thus, one has:

P _ Oln f(x,6,:;6,4) .
Additionally, let us sev = ———7=2* then:

Ex.6,:0, [(5 (x) — 9) VT] =
/]RR /mv <§ (x) — 0) %d}cder )

Finally, by mixing (6) and (7), one obtains:

3. THE CONSTRAINED HYBRID CRAM ER-RAO BOUND

3.1. Problem statement and notations

Let us first remind the estimation context in which the preubs
bound can be useful. Considér an observation space of points
x and letd = [0] OZ]T denotes D + R) —dimensional hybrid
real parameters vector to estimate, whiyds a vector of unknown
deterministic parameters belongingli, C R” and @, is a vec-  3.3. The proposed bound
tor of unknown random parameters belongingle C R with a
known prior p.d.f.f (6.;04). Let f (x,0) = f (x,0.;04) denotes
the joint p.d.f. ofx and@, parameterized bg,. Additionally, the
deterministic parametef,; are assumed to be constrained in a non ~ - ~ T
empty subset of I1, defined byK < D non redundant equality Ex.6,:04 [(9 - MUU V) (9 - MUU V) ] =

constraints: Ex0,.0, [55T +MUU"Exp,:6, [vv'] UUTM"

Ex.o,:0, [(5 (x) — e) vT] —Inpin @)

In the following, for sake of legibility, let us s& = 0 (x) — 6 and
U = U (0,). For any square matrik1:

C={04€1l;]|c(04) =0}, 1) T ~T ~ o T T
wherec (8,) is a K —dimensional vector of derivable functions de- —MUU" Ex0,:0, [Vg ] — Ex.0,:04 [9" ] Uu'M".
fined onIly. Let C (64) denote theK x (D + R) matrix defined -
by SinceEy o, .0, {(5 - MUU"v) (6 - MUU"v) } is positive

dc (0 dc(04) dc (6 e ~
C(04) = C(Td) = { C(Td) C(Td)} =[C4(0q) O], (2) semidefinite and, from (8Exe, 0, [OvT] =1Ip.r, one has:
o 407~ de? O
whereCyg (04) is aK x D matrix. Since the constraints are assumed o 0 [55? o MUU” + UUTMT -
to be non redundant, the rank @f; (8,) is K for any 8, satisfying i =\ MUU"Exg,.0, [vv'] UU"M"

(1). Then there exists R x (D — K) matrix U, (84) such that:
- Since this inequality holds for any matri¥I, the tightest lower

Ci(04)Uq(04) =0andU, (64) Ug(0a) =In-x, (3) bound denoted CHCRB is obtained by maximizing the right hand

wherelp_ x denotes the identity matrix of sizeé — K. Moreover, side of (9) oveiM:

if (3) holds, then the matri¥J (6,) = { Ud(()od) I(; } satisfies CHCRB = max

( MuUUT + uuTM?— )
M

MUUTEx0,.0, [vv"] UUTM”

(10)
C(84) U (04) =0andU" (02) U (64) =Ipir-x. (4  AsSUTE,p, .0, [vv"] U is symmetric positive definite, there ex-
ists an invertible diagonal matrild and an unitary matrixQ such
that U Ex 6,0, [vv'] U = QDQ”. Consequently, (10) can be
rJ'sewritten as:

Note that the column vectors &, (64) is a basis of the kernel of
C, (64) and the column vector dJ (6,) is a basis of the kernel of
C (64). If the constraints are also applied over random paramete
6., then the matrixU will depend oné.., leading to a lower bound CHCRB =
depending on the estimate &f (see section (3.3)). uQD 'QTuU-
BV ( (UQD' —MUQ) D (UQD ! - MUQ)” )

3.2. Estimator class requirement and preliminary results (11)

~ ) i ) SinceUQD ~!QTU is independent dM and since the CHCRB is
Let 6 (x) be an estimator &. The proposed bound is applicable for ¢5mjated as the difference of two positive semidefinitériathe
a class of estimatd? which are unbiased, as for the classical HCRB maximum is achieved if and only ¥IUQ = UQD ™, i.e.:
[1][17], i.e:

Exo,0, [0(x) ~ 8] = 0. (6)  MU=UQD'Q" = U (U Exo,0, [v'] U)71 .12
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Finally by substituting (12) in (10), one obtains:

CHCRB = U (UTEx,gr;gd [va] U)_l U’ (13)

Remarks:
eAnother possible derivation of the CHCRB can be obtainedsy u
ing the covariance inequality [18, p.124][4]:

E [551 K [ZwT] E~! [¢¢T] E [¢5T] (14)

with ¢ = UTv.

eIn general, the proposed bound does not need the investibflihe
Fisher matrixEx,e,.0, [vv"] but of UTExe, 6, [vv"] U only.
This condition is also required for the CCRB in the deterstini
estimation context [16].

olf the matrix U depends o, thenE o .0, [5VTU} # U and

the lower bound will depend of, what is pointless.

3.4. Comparison with existing Cranér-Rao Bounds
3.4.1. The CHCRB versus the HCRB

The unconstrained HCRB is given by [1][17]:
HCRB =E.} o {va] , (15)

whereF=E, g .0, [vv”] is the so-called hybrid Fisher informa-

tion matrix. The HCRB can be obtained from the CHCRB when
K = 0 leading toU = Ipr. In other cases, the HCRB and the .
CHCRSB are different. However, a comparison between the CBICR CHCRB = UE, g .0,

and the HCRB is possible whdh is non singular (otherwise the
HCRB does not exist). Sind8 is symmetric positive definite, there

exists a symmetric invertible matrR2 such thaF = F2Fz. Thus
the CHCRB can be rewritten as:

—1
CHCRB = F 3F3U (UTF€F5U> UTF5F~ %
—F 3P, F %
F2U
1 1 T 1 -1 1 T .
whereP_; = F§U<(F§U) FfU) <F§U) is the
projection matrix onto the column spaceEﬁ U. LetP+, de-

F2U
notes the projection matrix onto the vector space orthdgtontoe
previous one, then one hﬁsF%U +Pt, . I and:

F2

CHCRB = F 2 (I—P . )F*%
F2U

F ! -F P,
F2U

vlN

therefore:
CHCRB =< HCRB. (16)

This result is expected since the constraints can be irtEgras
additional informations in order to estimate more acclydte pa-
rameters of interest. It has been shown in [19] that estonatigo-
rithms which include parameters constraints could be Idhen the

3.4.2. The CHCRB versus the marginal CCRB

Another question that we can ask is what is the differencedsen

the CHCRB and the marginal CCRB for the deterministic param-
eters with constraints where in the first case, we estimateilsi
taneously non random parametés and random parametets.,
whereas in second case, we estimate non-random paranfigters
only, 8, being regarded as nuisance parameters? To answer this
question, note that, first, the CHCRB can be split into foocks:

[ CHCRB, CHCRBY,
CHCRB_{ CHCRB,, CHCRB, (a7

where the diagonal blockSHCRB,; and CHCRB, are respec-
tively the lower bounds on the MSE of non-random parameigrs
and random parametefs i.e.:

1Y

Exo,:0, |:<§d (x) — 9d> (éd (x) — 9d>T} CHCRB,

1Y

Ex.o.0, {(@ ()~ 6.) (6. (0 - aT)T} CHCRB,.

Second, letr, = %jf“%) andv, = 2209.:%) Then the
Fisher information matrix can be decomposed as:

Vavy  Vavy
F= Ex,er;od T T
VrVy VeV
Similarly:
T T T T
UgvavgUs Ugvgv; u”
T T
v,vg Uy VeV,

(18)
LetS = EX,OT;Bd [Ugvdngd] — R, where
R = UgEx,eT,;ed [Vdvz] E;)lgr;g [VrVTT] Ex,0,0, [VrVg] Uy,
then an inversion by block of (185’ leads to the following esqsion

of the CHCRB:

CHCRB =
Uy 0
_E;ylﬁwed [VTVZ} ]Exyer;gd [vTvdT] Ug 1

- 0
X { 0 E;,lgr:(’d [vrvﬂ }
« { Ul —UlExe, 0, [Vdvﬂ
0

(19)

E-L

x,0,.;604

[vevy] ]

Then, by identification between (17) and (19), one has:
CHCRB, = U,S™'U}J.

SinceR is a positive semidefinite matri$, = Ex.6,,0, [U7vavy Ud,
which implies:

CHCRB, < Uy (Ui Exo,0, [vavi] Ud>71 Ul (20)

The right hand side of (20) is the so-called marginal CCRBwhe
0. is considered as nuisance parameters. Consequently, tG&BH

unconstrained lower bounds. This is why the CHCRB, even floweis lower than the marginal CCRB. This is an extension of thieor

than HCRB, is helpful in the hybrid estimation context witram-
eter constraints.
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relation existing between the unconstrained hybrid lowema and
the unconstrained marginal lower bound [4].



4. APPLICATION TO DOPPLER ESTIMATION

We consider a radar system consisting of-alement antenna ar-
ray receiving scaled, time-delayed, and Doppler-shifteldbes of
a known complex bandpass signat () ¢?2™/<t, where f. is the
carrier frequency andr (¢) is the envelope of the emitted signal.
The antenna receives a pulse train (burst). gfulses of duratiofl
and bandwidth3, with a pulse repetition interval (PRI}, backscat-
tered by a "slow” moving target in comparison with (¢), i.e. [20]:
[20(L —1)T| << £ (no range migration) and*Tpf. << 1
(Doppler effect orer (t) is negligible), where: is the speed of light
andv is the radial velocity of the target. Under the standard ltiygo
sis of temporally white nuisance signal (thermal noise)mfigr o2
and a non fluctuating target during the burst duration, a &g
observation model for thé”, 1 < [ < L, pulse is given by [20]:

o (t)=er(t—7)au+mn(t), R ACa

=1

(21)

o=«

%, is the normalized Doppler

where f = —2f.2T, < f <3
frequency andv represents the complex amplitude of the target (in-
cluding power budget equation). For the sake of simplicity,as-
sume that the target range is known. Therefore at the oufggheo
delay/range matched filter at timme= 7, the observation model is:

y =52 Ly s = VBToa =1 + jg, (22)
and the vector of unknown parameters to estimae s (r, g, f)T
where(r, ¢) are assumed to be deterministfds assumed to be ran-
dom with a known Gaussian prior distributig ( f,, o) and inde-
pendent from the noise; assumed to be circular complex Gaussian
distributedr; ~ CA (0,07 ). This scenario corresponds to a multi-
function radar entering a tracking mode after a target dietein a
surveillance mode. The radar budget, i.4?, andf, associated to
the target have been previously assessed by the detecjpnfdhe
surveillance mode. However, during the inherent delay @atexl
to the mode switch, the radial velocity of the target may yvaryat
we model by a prior distribution. An interesting questiomvisether
it is worth taking into account this radar budget knowledgethe
estimation of thef. Indeed, this amounts to introduce the following
equality constraintr? + ¢ = |s|> = c.
Therefore, the answer can be provided by a comparison betithee
CHCRB and the HCRB. Using (15), the classical HCRB is:

-1

2L 0 2mqL(1—L)
02 02
d” 2L 271'1'L(’L—1)
% o5
omqL(1—L) 2mrL(L—1) 472(r?+¢*)L(L—1)(2L—1) 1
o5 o% 30% o'Esz
(23)
The CHCRB is obtained using the following matiik (13):
a =—r g\7
= Is| s
U ( 0 0 1 ) . (24)

In order to validate the proposed approach, we compute the &S
the classical Maximurd Posteriori MLE (MAPMLE) defined as:

(r.a.7) (25)

and the MSE of the Constrained MAPMLE (CMAPMLE) which re-
stricts the(r, ¢) domain fromR? to S = {(r,q) |r* + ¢* = |s|*}.

The simulation settings arer %, |s|? 0.8, f = 0.25,
oy = 0.05 andL = 32. The empirical MSE are assessed with

arg max

Ty Fpia (v,Fi7.4)
(r,q) ER2, f€]—0.5;0.5]
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5000 Monte-Carlo trials and a frequency st&p = 278, In figure

(1), the total empirical MSE of the MAPMLE and the CMAPMLE
are compared with the trace of HCRB and CHCRB. One can note
that the CMAPMLE total MSE is lower than the classical HCRB
whereas the CHCRB adequately predicts the asymptotic mahatv

the CMAPMLE total MSE. In figure (2), the empirical MSE g?f

is compared with the HCRB and the CHCRB. Since the HCRB and
the CHCRB are identical, therefore the estimatiorfo's indepen-
dent of the knowledge of the radar budget at least in the amtiop
region. This theoretical result is confirmed by the same psytic
performance of the MAPMLE and CMAPMLE. It is an extension
of a well known property of the deterministic single tondrastion
problem [21] to the random parameter case.

0

10 & ‘ ‘
o8 —Tr(CHCRB)
358gy o Tr(CMAPMLE MSE)
NG ---Tr(HCRB)
35 = TH(MAPMLE MSE)
-1
10F E
w
%]
=
1072
107
-10 -5 15 20

5
SNR (dB)

Fig. 1. Comparison of MAPMLE total MSE and HCRB versus SNR

—CHCRB
o CMAPMLE MSE||
---HCRB

= MAPMLE MSE

20

15

-10 5
SNR (dB)

Fig. 2. Comparison of MAPMLE MSE off and HCRB versus SNR

5. CONCLUSION

In this paper, a constrained hybrid lower bound, called tHERB,
has been developed in order to take into account equalitstints
between deterministic parameters. The CHCRB is not onlyetee
vant bound to predict the asymptotic behavior of constchgsima-
tors but also a versatile tool for estimation performancayasis and
design of a system of measurement involving hybrid pararsete
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