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ABSTRACT
A classical problem that arises in numerous signal processing
applications asks for the reconstruction of an unknown, k-
sparse signal x0 ∈ Rn from underdetermined, noisy, linear
measurements y = Ax0 + z ∈ Rm. One standard approach
is to solve the following convex program x̂ = arg minx ‖y−
Ax‖2+λ‖x‖1, which is known as the `2-LASSO. We assume
that the entries of the sensing matrix A and of the noise vector
z are i.i.d Gaussian with variances 1/m and σ2. In the large
system limit when the problem dimensions grow to infinity,
but in constant rates, we precisely characterize the limiting
behavior of the normalized squared error ‖x̂− x0‖22/σ2. Our
numerical illustrations validate our theoretical predictions.

Index Terms— LASSO, square-root LASSO, normalized
squared error, sparse recovery, Gaussian min-max theorem

1. INTRODUCTION
1.1. Motivation

The Least Absolute Shrinkage and Selection Operator (LASSO)
is a celebrated convex progam used to estimate sparse signals
from noisy linear underdetermined observations. Given a
vector of observations y = Ax0 + z ∈ Rm of an unknown,
but k-sparse (i.e., at most k nonzero entries), signal x0 ∈ Rn,
the `2-LASSO1 produces the following estimate for x0:

x̂ := arg min
x

Φ(x;A, z) := ‖y −Ax‖2 +
λ√
m
‖x‖1. (1)

Here, A ∈ Rm×n is the sensing matrix, z ∈ Rm is the noise
vector and λ > 0 is a regularizer parameter. The LASSO has
been long investigated from different perspectives and shown
to enjoy unique properties, in terms of both computation and
precision. Yet, some important asymptotic properties of it
have not yet been fully understood. Our interest is on the
exact characterization of the reconstruction error ‖x̂− x0‖2.

1.2. Contribution
We assume a generic setup in which the entries of the sens-
ing matrix and the non-zero entries of x0 are i.i.d Gaussian.
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1Also known as “square-root LASSO” [1]. Please refer to [2, Sec. 1.3].

Also, the noise vector z is assumed to have entries i.i.d Gaus-
sian with variance σ2. Under this assumption we derive an
asymptotically exact expression for the normalized squared
error (NSE) ‖x̂ − x0‖22/σ2 of the `2L-ASSO. In the low
noise regime σ2 → 0, our result reduces to simple and inter-
pretable formulae. Although our theoretical analysis requires
an asymptotic setting in which the problem dimensions grow
to infinity, our numerical illustrations suggest that the predic-
tions be accurate already with problem dimensions ranging
over only a few hundreds. Also, we remark on our assumption
on the Gaussian nature of the sensing matrix. This assump-
tion has a long tradition in the statistics literature and sheds
important insights [3]; the Gaussian ensemble has wonderful
properties which make the analysis tractable, while at the
same time many of the results generalize to a wider class of
distributions. The main technical tool used in our analysis is
a gaussian comparison inequality due to Gordon [4]. When
combined with appropriate convexity assumptions, the in-
equality can be shown to be tight [2, 5, 6, 7], which makes it
ideal for our precise analysis.

1.3. Relevant Literature
The LASSO was introduced by Tibshirani in [8] in the form

x̂ = arg min
x
‖y −Ax‖2 s.t. ‖x‖1 ≤ ‖x0‖1. (2)

(1) is a regularized version of (2). An alternative to (1) solves

x̂ = arg min
x
‖y −Ax‖22 + τ‖x‖1. (3)

Both this and (1) are variations of the same algorithm and La-
grange duality ensures that they both become equivalent to
the constrained optimization (2) for proper choice of the reg-
ularizer parameters. There are reasons to argue in favor of
either of them [1, 9], but they go beyond the scope of this pa-
per. Early well-known bounds on the reconstruction error of
the LASSO were order-wise in nature (i.e. accurate only up
to constant multiplicative factors) and derived based on RIP
and Restricted Eigenvalue assumptions on the measurement
matrix [1, 10, 11, 12, 13]. To the best of our knowledge, the
first precise asymptotic evaluation of the limiting behavior of
the LASSO reconstruction error is due to [3, 14]; they con-
sider problem (3), i.i.d Gaussian sensing matrix A and use the
Approximate Message Passing (AMP) framework. More re-
cently, and closer to our work, Stojnic introduced an alterna-
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tive framework that cleverly uses a celebrated gaussian com-
parison inequality due to Gordon [4]; he applied this on (2)
and obtained precise characterizations for its worst-case NSE,
which he showed to occur in the limit σ2 → 0. The same
framework was used in [2] to generalize the results of [15] to
arbitrary convex regularizer functions. Moreover, the authors
in [2] consider (1) and obtain simple, precise error formulae
when σ2 → 0. Our work, extends this result of [2] in several
directions for the case of sparse recovery. First, it holds for ar-
bitrary values of the noise-variance σ2; to our knowledge, this
is the first such precise asymptotic result for (1) ([3] consid-
ers (3)), and suggests the capabilities of the framework used.
Also, when σ2 → 0, it recovers the result of [2] and extends
it on the range of values of λ for which it holds. Finally, we
believe that our result can be used to prove that the worst-
case NSE of (1) occurs when σ2 → 0. This would imply that
the simple and interpretable expressions corresponding to that
regime are tight bounds on the NSE for arbitrary noise levels.
Some additional effort is required to prove this claim and is,
thus, left for future work.

2. ANALYSIS
2.1. Problem Setup
For the rest of the paper, let N (µ, σ2) denote the normal dis-
tribution of mean µ and variance σ2. Also, we use ‖ · ‖ in-
stead of ‖ · ‖2. Let x0 ∈ Rn denote the unknown signal and
y = Ax0 + z ∈ Rm denote the vector of observations. We
make the following assumptions:
• the entries of A are i.i.d N (0, 1/m),

• the entries of z are i.i.d N (0, σ2),

• x0 is k-sparse with fixed support set S, i.e. (x0)i = 0

for all i /∈ S. Also, (x0)i
i.i.d∼ N (0, 1),

Consider estimating x0 via the solution x̂ := x̂(λ) of the
LASSO program in (1). Our goal is to provide tight expres-
sions for the reconstruction error ‖x̂ − x0‖; this depends ex-
plicitly on x0 and implicitly on A and z. We consider an
asymptotic setting in which the problem parameters n,m and
k grow proportionally as m/n → δ ∈ (0, 1) 2 and k/m →
γ ∈ (0, 1). Our result characterizes the limiting behavior
of the quantity of interest as n → ∞. To suppress nota-
tion, we use the symbol “≈” to denote convergence in prob-
ability, i.e. Xn ≈ X is used to denote that a sequence of
random variables Xn converges in X in that for all ε > 0,
limn→∞ P (|Xn −X| > εX) = 0. Similarly, we writeXn &
X if for all ε > 0, limn→∞ P (Xn < (1− ε)X) = 0.

2.2. Preliminaries
It is convenient to rewrite (1) changing the optimization vari-
able to the error vector w := x− x0: 3:

min
w

Φ(w;A, z) :=
√
m‖z−Aw‖+ λ‖x0 + w‖1. (4)

2Our analysis extends to the overdetermined case, where δ ∈ [1,∞). For
simplicity, in this paper we focus on the underdetermined regime.

3Also, note the re-scaling in (4) with a factor of
√
m.

Denote ŵλ,σ(A, z) the solution of (4). We often drop the de-
pendence on the arguments λ, σ,A, z when clear from con-
text. Suppose we want to show that ‖ŵ‖ ≈ α∗, for appro-
priate α∗ ≥ 0. Equivalently, for all ε > 0 and sets Rε :=
{` | |`− α∗| > εα∗}, we wish that limn→∞ P(‖ŵ‖ ∈ Rε) =
0. It suffices to prove the existence of δ := δ(ε) > 0 such that

lim
n→∞

P
(

min
‖w‖∈Rε

Φ(w) ≤ (1 + δ)Φ(ŵ)

)
= 0. (5)

Directly showing (5) through analyzing Φ(w) is difficult. In-
stead, we use the Gaussian min-max Theorem to translate
the LASSO objective function in (4) to a simpler one, that
is amenable to direct analysis.

2.3. Introducing a Simpler Optimization
The Gaussian min-max Theorem belongs to the family of the
so called Gaussian comparison inequalities [16, Ch. 3] and
was proved by Gordon in [4, Lemma 3.1]. To see how that
theorem can be applied in our case, observe that

Φ(w) = max
‖u‖≤1

uT [
√
mA,−z/σ]

[
w√
mσ

]
+ λ‖x0 +w‖1.

Let g ∈ Rm, h ∈ Rn, g ∈ R have i.i.d N (0, 1) entries and

φ(w;g,h) := max
‖u‖≤1

{√
‖w‖2 +mσ2gTu

− ‖y‖(hTw +
√
mσg) + λ‖w + x0‖1

}
. (6)

Then, the Gaussian min-max Theorem4 states that for arbi-
trary setR ⊂ Rn and c ∈ R:

P(min
w∈R

Φ(w;A, z) ≤ c) ≤ 2P(min
w∈R

φ(w;g,h) ≤ c). (7)

Recently, it was shown in [7, 15] that when combined with ap-
propriate convexity assumptions, the Gaussian min-max The-
orem is tight. In particular, for a convex compact set R it is
also true [7, Theorem II.1] that

P(min
w∈R

Φ(w;A, z) ≥ c) ≤ 2P(min
w∈R

φ(w;g,h) ≥ c). (8)

(7) and (8) are critical for establishing (5). They suggest the
analysis of the following optimization problem5, which we
refer to as “Gordon’s optimization (GO)”:

(GO) φ(w∗;g,h) := min
w

φ(w;g,h), (9)

in place of the original LASSO optimization in (4). To see
how this can be useful, assume that φ(w∗) ≈ D∗; then, it
would follow directly from (7) and (8) that Φ(ŵ) ≈ D∗.
Next, we analyze such asymptotic properties of (GO) .

4In fact, the statement in (7) is a slight variation of the original statement
of the Gaussian min-max Theorem. Please refer to [7] for details.

5 The proof of (8) in [7] requires the setR to be compact. This technical
detail can be resolved by assuming a sufficiently large upper bound K on
‖ŵ‖ such that constraining the minimization in (9) over the set ‖w‖ ≤ K
does not change the optimal cost.
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D(λ) := k(1 + λ2) + (n− k)ρ(1, λ), C(λ) := −(λ/2)∂D(λ)/∂λ, ψ(λ) := λ/Q−1 (1/2 + (m−D(λ)−C(λ))/(2k)) ,

f(λ, φ) := m−D(λ) +mσ2(1− φ2) + k
(
φ2 − λ2 − 2

)
(2Q (λ/φ)− 1) + k

√
2/πλφ exp

(
−λ2/(2φ2)

)
. (10)

2.4. Analyzing Gordon’s Optimization
2.4.1. Scalarization
We begin with simplifying (GO) and reducing it to an opti-
mization problem involving only scalars. For now, assume
that g,h and g are all fixed. Note that the maximization over
the direction of u in (6) is easy to evaluate. Furthermore, we
may write ‖x0+w‖1 = max‖v‖∞≤1(x0+w)Tv. With these:

φ(w∗) = min
w

max
0≤β≤1
‖v‖∞≤1

{√
‖w‖2 +mσ2‖g‖β (11)

− β(h− λv)Tw − β
√
mσg + λxT0 v

}
.

The objective function in (11) is convex-concave in w and
β,v. Also, the constraint sets are closed convex and one of
them is bounded; thus, we can switch the correspoding order
of min-max [17, Cor. 37.3.2]. After this, the minimization
over the direction of w is easy to evaluate:
φ(w∗) = max

0≤β≤1
‖v‖∞≤1

min
α≥0

{√
α2 +mσ2‖g‖2β − β

√
mgσ

− α‖λv − βh‖2 + λxT0 v
}
.

Note that the optimization variable α above plays the role of
the `2-norm of w; its optimal value α∗ is equal to ‖w∗‖2.
Switching one last time the order of optimization between
v, β and α, we conclude with the following optimization:

min
α≥0

max
0≤β≤1

{√
α2 +mσ2‖g‖2β − β

√
mgσ − βF(α, β)

}
,

where F(α, β) := min‖v‖∞≤1

{
α‖λβv − h‖2 − λ

βx
T
0 v
}
.

The final step amounts to reducing the optimization over v to
a scalar optimization. The idea here is to apply the fact that
for any real r ≥ 0, one has

√
r = minp>0

(
p
2 + r

2p

)
in order

to make the objective function separable. With this:

F(α, β) = min
‖v‖∞≤1

min
p>0

αp

2
+
a‖λ/βv − h‖22

2p
− λ

β
xT0 v

= min
p>0

{
αp

2
+
∑
i∈S

[ α
2p

min
|vi|≤λβ

(
vi − hi −

p(x0)i
α

)2

− p(x0)2i
2α

− hi(x0)i

]
+
α

2p

∑
i/∈S

min
|vi|≤λβ

(vi − hi)
2

}
. (12)

The second equality above follows from standard comple-
tion of squares. The scalar minimizations over vi’s in (12)
are simple soft-thresholding operations: min|q|≤τ (r − q)2 =
((|r| − τ)+)2. Combining all the above, we have shown that
φ(w∗) = minα≥0 max0≤β≤1,p>0 φo(α, β, p), for an appro-
priately defined objective function φo(α, β, p).

2.4.2. Concentration
Our next step is to analyze the limiting behavior of φo(α, β, p).
Recall that g,h, g have i.i.d N (0, 1) entries. Thus, ‖g‖ ≈√
m and g ≈ 0. Using these and applying the Law of Large

Numbers to the summations in (12) it can be shown that
φo(α, β, p) ≈ D(α, β, p), where

D(α, β, p) := β
(√

α2 +mσ2
√
m− αp

2
+ k

p

2α

− k α
2p
ρ(
√

1 + p2/α2, λ/β)− (n− k)
α

2p
ρ(1, λ/β)

)
,

ρ(c, τ) := Eg∼N (0,1)

[
(|cg| − τ)+

]2
= 2(c2 + τ2)Q(τ/c)−

√
2/πcτe−τ

2/(2c2), (13)

and Q(x) = (1/
√

2π)
∫∞
x
e−x

2/2dx. Albeit some technical-
ities involved (skipped due to space limitations):

min
w

φ(w) ≈ min
α≥0

max
0≤β≤1
p>0

D(α, β, p), (14a)

min
‖w‖∈Rε

φ(w) ≈ min
α∈Rε

max
0≤β≤1
p>0

D(α, β, p). (14b)

withRε = {` | |`− α∗| > εα∗} and α∗ minimizer in (14a).
2.5. Back from Gordon’s Optimization to the LASSO
Once we have analyzed (GO), we may now appropriately ap-
ply the Gaussian min-max Theorem (in particular, [7, Thm.
II.1]) to conclude with the following result.
Theorem 2.1 (LASSO Objective). Recall the definitions
of Φ(w), D(α, β, p) in (4) and (13), respectively. Also, let
Φ∗ := minw Φ(w) andD∗ := minα≥0 max0≤β≤1

p>0
D(α, β, p).

Then, for all ε > 0, limn→∞ P(|Φ∗ −D∗| > εD∗) = 0.
The proof follows from (14a) when combining (7) and (8).
Also, a single application of (7) in (14b) shows that for any
Rε ⊂ R:

Φε := min
‖w‖∈Rε

Φ(w) & min
α∈Rε

max
0≤β≤1
p>0

D(α, β, p) =: Dε. (15)

To appreciate the power of Theorem 2.1, note that it gives
an explicit evaluation of the limiting behavior of the LASSO
optimal cost in terms of the optimal cost of a much simpler,
scalar and deterministic optimization problem. What is more,
we can combine Theorem 2.1 with (15), to prove the follow-
ing result about the limiting behavior of the LASSO error.

Theorem 2.2 (LASSO error). Let x̂ be a minimizer of the
LASSO in (1) and recall the definition of function D(α, β, p)
(13). If α∗ is optimal for minα≥0 max0≤β≤1

p>0
D(α, β, p), then

for all ε > 0: limn→∞ P(|‖x̂− x0‖2 − α∗| > εα∗) = 0.
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We provide a sketch of the proof here (see also [7,
Thm. II.1]). Consider the event
E = {Φ∗ ≤ (1 + ζ1)D∗ and Φε ≥ (1− ζ2)Dε}.

In view of Thm. 2.1 and (15): limn→∞ P(E) = 1. Hence,
lim
n→∞

P (Φε ≤ (1 + δ)Φ∗) ≤ lim
n→∞

P (Φε ≤ (1 + δ)Φ∗|E)

≤ P ( (1− ζ2)Dε ≤ (1 + δ)(1 + ζ1)D∗ ) . (16)

Next, we show that we can choose ζ1, ζ2, δ such that the (de-
terministic) event in (16) does not occur; this will complete
the proof of (5). It can be shown that the function D(·, β, p)
is strictly convex for all β, p. Thus, ∃ constant L > 0 :
Dε −D∗ =: D(αε, βε, pε)−D(α∗, β∗, p∗) =

D(αε, βε, pε)−D(αε, β∗, p∗) +D(αε, β∗, p∗)−D(α∗, β∗, p∗)

≥ 0 + L|αε − α∗|2 ≥ ε2Lα2
∗. (17)

Denote θ = θ(ε) := ε2Lα2
∗/D∗. Set ζ1 = θ/4, ζ2 = θ/2

1+θ ,
δ = θ

4+θ and apply (17) to complete the proof.

2.6. Simplifying the Result
For any values of λ and σ, we ask for an accurate prediction of
the LASSO error ‖x̂λ,σ−x0‖. Theorem 2.2 yields an answer
as the solution of a minimax optimization, which is scalar, de-
terministic and convex. We have put some additional effort in
order to simplify this optimization and make it more explicit.
In particular, we can show that it has a unique global opti-
mal solution, the evaluation of which essentially breaks down
to solving two nonlinear one-dimensional algebraic equations
(see Theorem 3.1). Apart from the computational advantage
of this alternative description, it also allows for further theo-
retical insights. For instance, starting from Theorem 3.1 we
believe that it is possible to prove that the worst-case NSE is
attained in the limit of the noise variance σ2 → 0.

3. RESULTS
3.1. Arbitrary SNR Values
For the statement of our main result, recall (13) and further
consider the definitions in (10). We also need the following.
Definition 3.1 (λσcrit). Define λσcrit as the unique solution
of the equation f(x, x

ψ(x) ) = 0. Further, define λ0crit :=

Q−1
(

1
2
m−k
n−k

)
and

λmincrit :=

{
Q−1

(
1
2

m
n−k

)
if m < n− k,

0 else.

It can be shown that for all σ > 0: λmincrit ≤ λσcrit ≤ λ0crit.

Theorem 3.1. Let x̂λ,σ be the solution of the LASSO in (1).
Recall the definitions of f and λσcrit in (10) and Definition 3.1.
Let λ̂ := max{λ, λσcrit} and q∗(α) =

√
1 + m

σ2(m+α2) . De-

note α∗ the unique solution of the equation f
(
λ̂, q∗(α)

)
= 0

with respect to α. Then, the following limit holds in probabil-
ity: limn→∞

‖x̂λ,σ−x0‖2
σ
√
m

= α∗.

3.2. Asymptotic NSE
Here we consider the case σ2 → 0.
Theorem 3.2. Let λ̂ := max{λ, λ0crit}. If m ≥ D(λ̂), then
the following limit holds in probability

lim
n→∞

lim
σ→0

‖x̂λ,0 − x0‖2
σ
√
m

=

√
D(λ̂)

m−D(λ̂)
.

When λ > λcrit, Theorem 3.2 recovers the result of
[2, Theorem 3.2]; adding to this, we are able to character-
ize the behavior when λ < λcrit. The theorem suggests
that stable recovery is possible only when m > D(λ̂). In
particular, we require that at least m > minλ>0 D(λ).
A recent line of work [18, 19, 20, 21], has shown that
minλ>0 D(λ) precisely characterizes the minimum num-
ber m of required measurements for exact recovery of sparse
signals under noiseless linear measurements. Also, the min-
imum of the formula that appears in the theorem is achieved
at λbest := arg minλ>0 D(λ). We refer the reader to Figure
1 for an illustration of λ0crit, λbest and to [2, Section 4.2] for a
detailed further discussion.

4. SIMULATION RESULTS AND CONCLUSION
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(a) optimal cost
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Fig. 1: n = 500, m = 150, k = 20. Averages over 20 realizations.

In Figure 1, observe the close agreement of the simulation
results to the predictions of Theorems 3.1 and 3.2 (for the case
σ2 = 10−4, we used Theorem 3.2 for the prediction). Refer to
Section 3.2 for the definitions of λ0crit, λbest; λmax is such that
m < D(λ) for all λ > λmax. Our expressions are accurate
for problem sizes on the order of a few hundreds and valid for
all values of σ2. In Figure 1b, the worst-case NSE occurs in
the small noise-variance regime. We believe that this claim
can be proved using Theorems 3.1 and 3.2.
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