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ABSTRACT

In this paper, we consider the problem of estimating a determinis-
tic vector parameter when the likelihood function is unknown or not
expressible. We develop an estimator, called measure-transformed
quasi maximum likelihood estimator (MT-QMLE), that minimizes
the empirical Kullback-Leibler divergence between the transformed
probability measure of the data and a hypothesized Gaussian prob-
ability distribution. By judicious choice of the transform we show
that the proposed estimator can gain sensitivity to higher-order sta-
tistical information and resilience to outliers. Under some regularity
conditions we show that the MT-QMLE is consistent, asymptotically
normal and unbiased. Furthermore, we derive a necessary and suf-
ficient condition for its asymptotic efficiency. The MT-QMLE is
applied to source localization in a simulation example that illustrates
its sensitivity to higher-order information and resilience to outliers.

Index Terms— Higher-order statistics, parameter estimation,
probability measure transform, robust estimation, source localiza-
tion.

1. INTRODUCTION

Classical multivariate estimation [ 1], [2] deals with the problem of
estimating a deterministic vector parameter using a sequence of mul-
tivariate samples from an underlying probability distribution. When
the probability distribution is known to lie within a specified para-
metric family of probability measures, parameter estimation tech-
niques such as the method of maximum likelihood [3] can be imple-
mented that utilize complete statistical information. In many practi-
cal scenarios this knowledge is unavailable, and therefore, one must
resort to other methods that require partial statistical information.

One of the most popular techniques of this kind is the method
of moments [3], [4] that is based on fitting multivariate cumulants of
certain orders to their empirical estimates. Usually, first and second-
order cumulants, i.e., the mean vector and covariance matrix, are
used. Their popularity arises from the fact that they are easy to ma-
nipulate, their sample estimates have simple implementations, and
the performance analysis of the resulting estimators is often trace-
able. In some circumstances, first and second-order cumulants may
be non-informative, such as for certain types of non-Gaussian data.
In order to overcome this limitation higher-order cumulants may be
incorporated. However, unlike first and second-order cumulants,
higher-order cumulants involve complicated tensor analysis [5], and
their empirical estimates are highly non-robust to outliers and have
increased computational and sample complexity.

Based on the observation that the mean vector and the covari-
ance matrix are the gradient vector and Hessian matrix of the cumu-
lant generating function evaluated at the origin, another framework
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that does not require knowledge of the likelihood function has been
proposed in [6]. This method operates by fitting the gradient or Hes-
sian of the cumulant generating function evaluated at some off-origin
points to their empirical estimates. These points are called process-
ing points and can be judiciously chosen to improve estimation per-
formance. Similarly to the mean vector and the covariance matrix,
the resultant cumulant-related quantities have appealing decompos-
ability properties and their sample estimates have simple implemen-
tations. Additionally, they have the key advantage that they involve
higher-order statistical information. This approach has been suc-
cessfully applied to signal gain estimation [6] and to auto-regression
parameter estimation [7], where a data-driven procedure for optimal
selection of the processing points has been devised that minimizes
an empirical estimate of the asymptotic mean-squared-error (MSE).
Other applications can be found in [8]-[13].

Recently, we have shown that the off-origin gradient vector and
Hessian matrix of the cumulant generating function may be viewed
as the standard mean vector and covariance matrix under some trans-
formed probability measure [14]-[16]. Hence, a wider class of esti-
mators than the one proposed in [6] can be obtained by considering
other measure-transformed mean vectors and covariance matrices.
These estimators can gain sensitivity to higher-order statistical in-
formation, resilience to outliers, and yet have the computational ad-
vantages of first and second-order methods of moments.

In this paper, we use this measure transformation approach to
develop a new estimator that operates by jointly fitting a measure-
transformed mean vector and covariance matrix to their empirical
estimates. The proposed transform is structured by a non-negative
function, called the MT-function, and maps the probability distribu-
tion into a set of new probability measures on the observation space.
By moditying the MT-function, classes of measure transformations
can be obtained that have different useful properties. Under the pro-
posed transform we define the measure-transformed (MT) mean vec-
tor and covariance matrix, derive their strongly consistent estimates,
and study their sensitivity to higher-order statistical information and
resilience to outliers.

Similarly to the quasi maximum likelihood estimator (QMLE)
[17], [18], the proposed estimator, called MT-QMLE minimizes the
empirical Kullback-Leibler divergence [ 19] between the transformed
probability measure and a hypothesized probability distribution. In
this paper, the hypothesized distribution is a Gaussian probability
measure with the MT-mean vector and MT-covariance matrix param-
eterized by the unknown parameter to be estimated. Under some reg-
ularity conditions we show that the MT-QMLE is consistent, asymp-
totically normal and unbiased. Additionally, a necessary and suffi-
cient condition for asymptotic efficiency is derived. Furthermore,
a data-driven procedure for optimal selection of the MT-function
within some parametric class of functions is developed that mini-
mizes an empirical estimate of the asymptotic MSE.

We illustrate the MT-QMLE for the problem of source local-
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ization in heavy-tailed compound Gaussian noise [2 1] that produces
outliers. By specifying the MT-function within the family of zero-
centered Gaussian functions parameterized by a scale parameter, we
show that unlike the sample covariance matrix (SCM) based estima-
tor [22] the MT-QMLE is resilient to outliers. Moreover, we show
the MT-QMLE performs similarly to the maximum-likelihood esti-
mator (MLE) that, unlike the MT-QMLE, requires complete knowl-
edge of the likelihood function.

The paper is organized as follows. In Section 2, we define the
MT-mean and MT-covariance and derive their empirical estimates.
In Section 3, we use these quantities to construct the MT-QMLE.
The proposed estimator is applied to source localization in Section
4. In Section 5, the main points of this contribution are summarized.
Proofs for the theorems and propositions stated throughout the paper
will be provided in the full length journal version.

2. MEASURE-TRANSFORMED MEAN AND COVARIANCE

In this section, we develop a transform on the probability measure
of a random vector whose probability distribution is parametrized
by the vector parameter to be estimated. Under the proposed trans-
form, we define the measure-transformed mean vector and covari-
ance matrix, derive their strongly consistent estimates, and establish
their sensitivity to higher-order statistical information and resilience
to outliers. These quantities will be used in the following section to
construct the measure-transformed quasi maximum likelihood esti-
mator.

2.1. Probability measure transform

We define the measure space (X, Sx, Px;e), where X is the obser-
vation space of a random vector X € CP, Sy is a o-algebra over X,
Px.e is a probability measure that belongs to some unknown para-
metric family of probability measures { Px;s : 9 € ®} on Sx, and
© C R™ denotes the parameter space.

Definition 1. Given a non-negative function v : C? — R satisfy-
ing

0 < E[u(X); Pxie] < oo, (D
where B [u (X); Px;o] £ [, u(x)dPx.e (x) and x € X, a trans-
form on Px,e is defined via the relation:

() (A) 2 T, [Preo] (A) = /A pu (x:0) dPxo (x), ()

where A € Sx and p, (x;0) 2 u (x)/E [u(X); Px.o]. The func-
tion u (+) is called the MT-function.

Proposition 1 (Properties of the transform). Let QQL be defined by

relation (2). Then 1) ngL is a probability measure on Sx. 2) ngl
is absolutely continuous w.r.t. Px,e, with Radon-Nikodym derivative
[20]:

dQSh (x)/dPxo (x) = pu (x;0). 3)

The probability measure Q;”e is said to be generated by the
MT-function u (-). By modifying u (-), such that the condition (1) is
satisfied, virtually any probability measure on Sx can be obtained.
2.2. The MT-mean and MT-covariance
According to (3) the mean vector and covariance matrix of X under

Qgéfz, are given by:
1 () £ E[Xpu (X;0); Pol “)

and

=0 (0) £ B [XX" 0 (X:0): Pria] —5 (0) ui™ (6), (5)

respectively. Equations (4) and (5) imply that ,ugf ) (@) and = ) (6)
are weighted mean and covariance of X under Px,o, with the
weighting function ., (;-) defined below (2). Hence, they can
be estimated using only samples from the distribution Px.s. By
modifying the MT-function w (-), such that the condition (1) is sat-

isfied, the MT-mean and MT-covariance under ng)e are modified.
In particular, by choosing u () to be any non-zero constant valued
function we have ngz = Px;o, for which the standard mean vector
Uy (0) and covariance matrix Xx () are obtained.

Given a sequence of N i.i.d. samples from Px;e the estimators
of p,gé‘) (@) and zﬁ;‘) (0) are defined as:

N
B2 X (Xa) ©6)
n=1
and
& (u) a H H
B 2D XX pu (X)) — 0 a0, (7)
n=1

respectively, where ¢, (X,) = u (Xﬂ,)/z,gzl u (Xy). Accord-
ing to Proposition 2 in [23], if E [||X||5u (X); Px;e] < oo then

sy RN pi (8) and ﬁ:ﬁf) el =" (8) as N — oo, where

221> denotes convergence with probability (w.p.) 1 [24].

“«

2.3. Robustness to outliers

Robustness of the empirical MT-covariance (7) to outliers was stud-
ied in [23] using its influence function [25] which describes the ef-
fect on the estimator of an infinitesimal contamination at some point
y € CP. An estimator is said to be B-robust if its influence function
is bounded [25]. In [23] we have shown that if the MT-function u(y)
and the product u(y)||y||3 are bounded over C” then the influence
function of the empirical MT-covariance is bounded. Similarly, it
can be shown that under the same conditions the influence function
of the empirical MT-mean (6) is bounded.

2.4. Sensitivity to higher-order statistical information

Notice that for any non-constant analytic MT-function u (-), which
has a convergent Taylor series expansion, the MT-mean (4) and MT-
covariance (5) involve higher-order statistical moments of Px.e. In
particular, by choosing u (x;t) £ exp (Re {t"'x}), t € C?, the
resulting exponential MT-mean and MT-covariance are the gradi-
ent and Hessian of the cumulant generating function (up to some
scaling factors) that have been used for parameter estimation in [6],
[7]. Moreover, by choosing u (x;t,7) £ exp (— [x — t||* /72).
7 € R4y, we obtain the Gaussian MT-mean and MT-covariance
that have been used for non-linear correlation analysis [14] and ro-
bust MUSIC [23].

3. THE MEASURE-TRANSFORMED QUASI MAXIMUM
LIKELIHOOD ESTIMATOR

In this section we develop an estimator for 8 that minimizes the em-
pirical Kulback-Leibler divergence between the transformed prob-

ability measure ngz, and a complex circular Gaussian probability
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distribution [26] <1>§;‘;1,, ¥ € © with MT-mean p (9) and MT-
covariance 25? ) (). Regularity conditions for consistency, asymp-
totically normality and unbiasedness are derived. Additionally, we
provide a closed-form expression for the asymptotic MSE and ob-
tain a necessary and sufficient condition for asymptotic efficiency.
Optimal selection of the MT-function out of some parametric class
of functions is also discussed.

3.1. The MT-QMLE

The Kullback-Leibler divergence (KLD) between ng)g and <I>§? 39 is
defined as [19] :
D (QWslIef,) 2 E {log

(w) (x.
q (Xve) . (u):| , (8)

¢(u) (-')(7 19)7 X;0

where ¢ (x; 8) and ¢ (x;9) are the density functions of Qg:L
and <I>§329, respectively. According to (3), D (Q%LH@&L
estimated using only samples from Px;e. Therefore, similarly to (6)

and (7), an empirical estimate of (8) given a sequence of samples
Xn,n=1,..., N from Px,e is defined as:

) can be

(u)
b (a8MI082) & 3o ko L X0

where @, () is defined below (7). The proposed estimator of 8 is ob-
tained by minimization of (9) w.r.t. 19, which by (6) and (7) amounts
to maximization of the following objective function:

T (89) £ —log det[ZL) (9)] — tr[(BL) (9)) 7 5%
—(i8 = pf (9)" (B (9) M (s — i (9)).

Hence, the proposed MT-QMLE is given by:

0, = arg max Ju (9). (10)

3.2. Asymptotic performance analysis

Here, we study the asymptotic performance of the estimator (10).
For simplicity, we assume a sequence of i.i.d. samples X,, n =
1,..., N from Px;e.

Theorem 1 (Consistency of 0.). Assume that the following con-
ditions are satisfied: 1) The parameter space © is compact.
2) p’ (0) # p (9) or L (0) # T (9) v # v
3) W () is non-singular V9 € © 4) u(u) (9) and = (9)
are continuous in ©. 5) E [||XH2 (X); Px;o| < 0c. Then,

éuie as N — oo,

« Py . L.
where “—” denotes convergence in probability [21].

Theorem 2 (Asymptotic normality and unbiasedness of 0.). As-
sume that the following conditions are satisfied: 1) 0. is consis-
tent. 2) 0 lies in the interior of © which is assumed to be compact.
3) ;Ag?) () and Eg?) () are twice continuously differentiable in
©. 4) E [u® (X); Px;e] < 0o and E [||X|[5 u* (X); Pxie] < 0.
Then,

6. —6 2 N (0,Cy,(0) as N — oo,

D e
where “—” denotes convergence in distribution [24]. The asymp-
totic MSE takes the form:

C.(0) = (0)G. (6)F," (9), (11)

where F, () £ —E[u (X)L, (X;0);Pxel, Tu(X;9) £

2 log (W) (X

2 logd D50 Gy, (0) 2 E [u? (X) 4, (X;0) 97T (X;0); Pxio]
. A 9log ¢ (X;

P, (X;9) & (Lese OG0T

non-singular.

Nolp-!

, and it is assumed that ¥, (0) is

The following proposition which relates the asymptotic MSE of
0. and the Cramér-Rao lower bound (CRLB) [27], [28], follows
directly from (11), the covariance semi-inequality [3], and the iden-
tity F,(0) = E[u(X)v,,(X; 0)n” (X;0); Px.s], where the vector

n(X;9) £ (ZBSXPNT ang £(X;9) is the density of Px.o-

Proposition 2 (Relation to the CRLB). Assume that the Fisher in-
Sformation matrix Irim (0) £E [n (X;0) nT (X;0); Px;e] is non-
singular. Then,

C. (0) = NIy (6),

where equality holds if and only if

n(X;0) =Teu (0)F, " (0) 9, (X;0)u(X) wp. 1. (12)

One can verify that when Px. is a Gaussian measure, the
condition (12) is satisfied only for non-zero constant valued MT-
functions for which ng 2, = Px;¢ and the resulting MT-mean and
MT-covariance (4), (5) only involve first and second-order moments.
This implies that in the Gaussian case, non-constant MT-functions
will always lead to asymptotic performance degradation. In the non-
Gaussian case, however, there may be cases where the MT-function
should deviate from a constant value in order to decrease the asymp-
totic MSE. This deviation results in weighted mean and covariance
that involve higher-order moments.

3.3. Optimal choice of the MT-function

We propose to specify the MT-function within some parametric fam-
ily {u (X;w),w € Q C C"} that satisfies the conditions stated in
Definition 1 and Theorem 2. An optimal choice of the MT-function
parameter w would be this that minimizes an empirical estimate of
the asymptotic MSE (11). The proposed empirical estimate is con-
structed by the same sequence of samples used for obtaining the MT-
QMLE (10) and takes the following form:

Cu(éu (W), w) 2 N_lf‘gl(éu (w),

xFL (0w (w),w),

w)Gu(Ou (w),w) (13)

where F, (9,w) 2 —L SN 4 (X,;w)Ty (Xp;9,w), and

Gu (W,w) £ 5 300, u* (Xns @) 4, (Xn; 9, w) ) (Xin; 0, ).
It can be shown that if the conditions in Theorem 2 are satisfied (13)

is a consistent estimator of the asymptotic MSE.

4. APPLICATION: SOURCE LOCALIZATION

In this section, we illustrate the use of the proposed MT-QMLE (10)
for robust source localization in heavy-tailed compound Gaussian
noise. We consider an array of p sensors that receive a signal gen-
erated by a narrowband incoherent far-field point source with az-
imuthal direction-of-arrival (DOA) 6. Under this model the array
output satisfies [29]:

X, = Spa(0) + Wy, 14)
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where n € N is a discrete time index, X,, € CP is the vector of
received signals, S, € C is the emitted signal, a () € CP? is the
steering vector of the array toward direction 6 and W,, € CP? is an
additive noise. We assume that the following conditions are satisfied:
1) 6 lies in the interior of a closed interval © C R, 2) the emitted
signal is symmetrically distributed about the origin, 3) a (+%) is twice
continuously differentiable with ||a (9)||, = /b, 4) a(0) # a(9)
VO # 9 € ©5) 5, and W, are statistically independent and first-
order stationary, and 6) the noise component is compound Gaussian
with stochastic representation [21]:

Wn = VnZn7 (]5)

where v, € R is a first-order stationary process, called the tex-
ture component, and Z,, € C? is a proper-complex wide-sense sta-
tionary Gaussian process with zero-mean and scaled unit covariance
021, which is statistically independent of v,.

In order to gain robustness against outliers, as well as sensitivity
to higher-order moments, we specify the MT-function in the zero-
centred Gaussian family of functions parametrized by a width pa-
rameter w, i.e.,

uc (x,w) = (7w?) Pexp (—[x[I°/w?), w Ry (16)

Notice that the MT-function (16) satisfies the B-robustness condi-
tions stated in Subsection 2.3. Using (4), (5) and (14)-(16) it can be

shown that the MT-mean and MT-covariance under Qg:g’) are:
pie) (9,w) =0 (17)

and

B (9,0) = rs (W) a @) a (@) +rw (W), (18)
respectively, where rg (w) and rw (w) are some strictly positive
functions of w. Hence, by substituting (16)-(18) into (10) we ob-
tain:

fuc () = argmaxa” (9) €L (w)a(9),
€
where CLS) () £ BV (w) + AL () AL ().
Under the considered settings, it can be shown that the condi-
tions stated in Theorems 1 and 2 are satisfied. The resulting asymp-
totic MSE (11) takes the form:

E [(174 + %ﬁ‘fﬁ) h (v/2pS, V21, w) ;Ps,u]

E2 [p[S|° h (\/pS, 7,w) ; Ps.,]
6
X 7% cos? 0) (p2—1)N’

Cug (0, w) =

19
where h (S, v,w) £ ((v* + w2)/w2)7p72 exp (—|S°/(V? + w?))
and 7 £ voZ. Furthermore, its empirical estimate (13) is given by:

Vs SN P (X, Oug (0)ud (X, w)
Cug (Oug (W) ,w) = n -
(uc () (N B(Xn, Oug (0))uc (X, w))?

where o (X, 9) £ 2Re {a” (9) XX"a ()}, a(d) £ da(9)/dd,
B(X,9) £ 2Re {a" (¥) XX"a (¥) + [a” (¥) X|*} and & (9) £
d*a (9)/d>.

In the following simulation examples, we consider a BPSK
signal impinging on a 4-element uniform linear array [29] with
half wavelength spacing from DOA § = 30°. We consider an e-
contaminated Gaussian noise model [21] under which the texture
component of the compound Gaussian noise (15) is a binary random

, (20)

variable with v = 1 w.p. 1 — e and v = ¢ w.p. e. The parameters
€ and c that control the heaviness of the noise tails were set to 0.2
and 100, respectively. We define the signal-to-noise-ratio (SNR) as
SNR £ 10log,o 0%/ [07 ((1 —€) + ec?)].

In the first example, we compared the asymptotic MSE (19) to
its empirical estimate (20) as a function of w obtained from a single
realization of N = 10000 i.i.d. snapshots with SNR = —25 [dB].
Observing Fig. 1, one sees that due to the consistency of (20) the
compared quantities are very close.

In the second example, we compared the empirical, asymptotic
(19) and empirical asymptotic (20) MSEs of the MT-QMLE to the
empirical MSEs obtained by the SCM-based estimator [22] and the
MLE. The optimal Gaussian MT-function parameter wopt Was ob-
tained by minimizing (20) over Q@ = [1,30]. Here, N = 1000
snapshots were used with averaging over 10° Monte-Carlo simula-
tions. The SNR is used to index the performances as depicted in
Fig. 2. One sees that the MT-QMLE outperforms the non-robust
SCM-based estimator and performs similarly to the MLE that, un-
like the MT-QMLE, requires complete knowledge of the likelihood
function. Additionally, one can notice that the empirical, asymptotic
and empirical asymptotic MSEs are nearly identical.

0

10

—— Asymptotic RMSE
* Empirical asymptotic RMSE

RMSE [deg]

Fig. 1. Asymptotic RMSE (19) and its empirical estimate (20) versus
the width parameter w (16) (§ = 30°, N = 10*, SNR = —25 [dB]).

3 —e— Empirical RMSE: MT-QMLE
—— Asymptotic RMSE: MT-QMLE
X Empirical asymptotic RMSE: MT-QMLE
107 ¢ Empirical RMSE: SCM
—e— Empirical RMSE: MLE

RMSE [deg]

~15
SNR [dB]

Fig. 2. The empirical, asymptotic (19) and empirical asymptotic (20)
RMSEs of the MT-QMLE as compared to the empirical RMSEs of
the SCM-based estimator and the MLE (8 = 30°, N = 10°).

5. CONCLUSION

In this paper a new multivariate estimator, called MT-QMLE, was
derived by applying a transform to the probability distribution of
the data. By specifying the MT-function in the Gaussian family, the
proposed estimator was applied to robust source localization in com-
pound Gaussian noise. Exploration of other MT-functions may re-
sult in additional estimators in this class that have different useful
properties.
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