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ABSTRACT

The parameter estimation of multiple superimposed complex
exponentials in noise has been a popular research problem for
decades due to its various practical applications. In this paper,
we propose a simple yet accurate estimator for estimating the
complex amplitudes and frequencies of the superimposed ex-
ponentials. Combining an efficient frequency estimator with a
leakage subtraction scheme, the novel method iterates to con-
secutively estimate each component by gradually reducing the
estimation error and increasing the estimation accuracy. Sim-
ulation results are presented to verify that the proposed algo-
rithm is capable of obtaining estimation performance that is
very close to the Cramer-Rao lower bound.

Index Terms— Frequency estimation, complex exponen-
tials, interpolation algorithm, Fourier coefficients, leakage
subtraction.

1. INTRODUCTION

The sum of multiple complex exponentials is adopted as the
signal model in many applications in engineering and chem-
istry [1]. Estimating the parameters of the signal is always a
fundamental and important research problem. In this paper,
we focus on the parameter estimation problem of the signal
model given by:

1
x(n) = Z A 4 (). (1

i=1

In (1), n = 0...N — 1 and N is the total number of signal
samples. I is the number of components and is assumed to
be known as a-priori information. A; and f; are respectively
the complex amplitude and the normalised frequency (f; €
[-0.5,0.5]) of the ith component, which we aim to estimate.
The noise terms w(n) are assumed to be additive Gaussian
noise with zero mean and variance o.

In the past few decades, various algorithms have been
proposed to deal with the estimation problem [2], and the
time-domain high resolution parametric estimators are among
the most popular ones [3, 4, 5, 6]. They utilise the singular
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value decomposition (SVD) to separate the noisy signal into
pure signal and noise subspaces. These methods can achieve
both high resolution, such that they can resolve peaks that
are closely spaced, and considerably accurate estimation. But
they also suffer from high computational cost due to the SVD
operation, which has a complexity of O(N?). The frequency-
domain estimators such as those proposed in [7, 8, 9], on the
other hand, are computationally more efficient than the time-
domain high resolution estimators. However, since they are
usually developed for single-tone signals, they are lack of es-
timation accuracy due to estimation bias when applied to sig-
nals with multiple components. In this paper, we put forward
a novel parametric estimation algorithm that operates in the
frequency domain. The algorithm is computationally efficient
as it does not rely on SVD operation and at the same time
can achieve accurate estimation performance of the parame-
ters that outperforms time-domain high resolution estimators.

The rest of the paper is organised as follows. In Section 2,
we present the novel parameter estimation algorithm. In Sec-
tion 3, we demonstrate the simulation results of the proposed
algorithm by comparing with state-of-art parametric estima-
tors and the Cramer-Rao lower bound (CRLB). Finally, con-
clusion is drawn in Section 4.

2. THE PROPOSED METHOD

The proposed estimation algorithm for multiple complex ex-
ponentials relies on the exact version of the A&M [7] es-
timator for the estimation of frequency of each component.
However, the A&M estimator is not directly implemented but
in combination with an iterative leakage subtraction scheme
which eliminates the error of the interpolated Fourier coeffi-
cients introduced by other components in the signal.

From now on, we denote A as the estimate of the param-
eter 4. We start the derivation of the novel method by re-
viewing the original A&M estimator. Assuming x(n) to be
the single tone signal (/ = 1), the A&M estimator starts by
finding the maximum bin of the periodogram of the signal as
the coarse estimation of the frequency

m = arg max Xk, 2
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where X(k) = DFT[x(n)]. The true frequency is then given by
m+0

N
where 6 € [-0.5,0.5] is the frequency residual. The coarse
estimation is refined by finding ¢ using an estimator based on

iterative interpolation on Fourier coefficients. The noise-free
interpolated coefficients in each iteration are given by

f:

3

N-1

Z x(n)e” J2Z (m+8+0.5)n
n=0
1+ ej27r(573)

1 — o/ % (s-6%05)°

Xi05

“

where § is the estimated residual from the previous iteration

and is initialised as zero. Putting z = ™% | an estimate of

77! is constructed as

Al T
Z = COS|—)—

Xos +X 05 ’n( bis )
N

j=————sin( =
Xos — X 05

~) &)

From 27!, the estimate of ¢ in each iteration can be given by
« N_(
b=-2-3{nz"}+3, ©6)

where J{e} denotes the imaginary part of e. It has been shown
in [7] that two iterations are sufficient for the estimator to
obtain asymptotically unbiased frequency estimate with the
variance only 1.0147 times the CRLB.

As the A&M estimator operates in the frequency domain
and is developed for single-tone signals, estimation error will
be introduced when it is applied to signals with multiple com-
ponents due to the fact that leakage of other components is
introduced which can lead to a deviation of the interpolated
coefficients from their expected values for a single exponen-
tial. Assuming x(n) = Z{:I x;(n) now has I components, and
denoting A; as the parameter A corresponding to the i com-
ponent, the noise-free interpolated Fourier coefficients to the

i" component in each iteration become

N-1
Xiz0s = Zx(n)e—j%(;ﬁi+6i:0.5)n %

n=0

®)

|
2
&
+
=g
2
&

where X; .5 are the expected coefficients for a single expo-
nential as shown in (4). X;.05 (I = 1...1,1 # i) are the leak-
age terms introduced by the other I — 1 existing components,
which can be calculated by

N-1
o on
Xjz05 = Z xy(n)e ™I (itdiz0.5m
n=0
1+ efz”A’
= A—m——— (©)]
1= e} ¥ (M,+A,+0 5)

where

M, = —ny;, and A =6 -5 (10)

Therefore, the reduction of the estimation error can be per-
formed by subtracting the sum of leakage from the interpo-
lated coeflicients to obtain the estimates of the expected coef-
ficients of a single exponential. Substituting (9) into (8) yields
N - ! 1+ eiz”A’

Xi+05 = Xi+05 — A/ 11
205 03 l;#i 1_81N(M/+A1+05) an

The true values of ¢; and A; are unknown and need to be es-
timated in the estimation process as well, though 77, can be
obtained by maximum bin search (2). Therefore, we iterate
the estimation process by consecutively estimate both param-
eters of each component with leakage subtraction incorpo-
rated. During the iteration process, to estimate the parameters
of the i component in the each iteration, the previous esti-
mation of the residuals and amplitudes of all the other I — 1
components are utilised to calculate the sum of the leakage
terms, while the previous residual estimate of the i compo-
nent itself is used to obtain the refined estimation of §; and A;.
It is straightforward that the estimation of §; can be obtained
using (6) by substituting (11) into (5), while the estimation
of the complex amplitude can be obtained by the maximum
likelihood estimator

N-1 1

A 1 s g
A=< | xmerin— N X, ), (12)

N n=0 I=1,l#i

where o
. ] = el2NG-)

X, ;= A——u—r. (13)
1 — ei2n(i=1)

is the leakage term at frequency f; introduced by the /™ com-

ponent. As a result of the iterative procedure, the leakage
terms (9) can be gradually better estimated as the number of
iteration increases and the error between )A(,-,io_s and X; .05 1s
gradually reduced. Thus the performance of the algorithm ap-
proaches the single component case for sufficient number of
iterations, and the parameters can be accurately estimated.

The estimation procedure of the proposed algorithm com-
bining the exact A&M estimator and the leakage subtraction
scheme is ﬁnally summarised as follows.

Initialising fl ,,,,, 1=01.5=A_;=0, loop the following
steps for Q iterations:
Fori=1to I, do:
1. If Q =1, calculate
i1 )
X(k) = DFT (x(n) - Z Aceﬂﬂfr”], (14)
c=1

and use (2) to find the maximum bin of |X k)%

2. Calculate X105, (1= 1...
X 205 using (7) and (11);

1,1 # i) using (9) and calculate
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Fig. 1. RMSE of /> obtained by the proposed method versus

Q under various v when SNR = 30dB and @« = 1. 1,000
Monte Carlo runs were used.
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Fig. 2. RMSE of f, obtained by the proposed method versus

QO under various v when SNR = 30dB and @ = 0.5. 1,000
Monte Carlo runs were used.

3. Find 2()?,-’4;0_5) using (5) and renew §; by (6);
4. Estimate f, and A; by (3) and (12) respectively.

It is worth pointing out that Step 1 of the algorithm (find-
ing the maximum bins) can be efficiently implemented as cal-
culating FFT for the first component and calculating the close
form expressions for the rest of the components. As a re-
sult, the overall computational complexity of the proposed
algorithm has the same order as that of the FFT operation,
O(N log, N), which is more efficient than the SVD based high
resolution methods that cost O(N?) for computation.

3. SIMULATION RESULTS
We test the proposed algorithm on the following signal
x(n) = e/ 4 @l L), (15)

The signal length is set to N = 64. v is the interval between
the two frequencies. f; and ¢ are randomly selected in each

—CRLB
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Fig. 3. RMSE of f; versus v obtained by various algorithm
when SNR = 30dB and @ = 0.5. 5,000 Monte Carlo runs
were used.

run such that fj € [-0.5,0.5 -v]and ¢ € [-m,71]. @ < 1 is
the ratio of the two magnitudes. We define the signal to noise
ratio (SNR) of the signal as p = 1/0.

We firstly examine the performance of the algorithm ver-
sus different the numbers of iterations Q. In this simulation
we set SNR = 30dB. In Fig. 1 we plot the root mean square
error (RMSE) of fg versus Q under different frequency inter-
vals v when @ = 1. We only show the results of f, because
the performance on both frequencies are similar as @ = 1.
The corresponding CRLB [10] are also plotted for compari-
son purposes. In the case of v = 1.1/N, where the frequencies
are slightly more than one bin (1/N) away, 22 iterations are
enough for the RMSE of the estimate to become extremely
close to CRLB. It is straightforward to find that less iterations
are needed as the frequencies become further apart from each
other, and only Q = 3 is needed in the case of v = 2/N. In Fig.
2 we show the RMSE of f;, when @ = 0.5. We can find that
due to lower SNR, the algorithm converges more slowly when
v = 1.1/N, and Q = 30 are needed for CRLB-comparable
performance. Nevertheless, similar results as in Fig. 1 can be
observed for v = 1.5/N and 2/N.

Then we investigate the performance of the algorithm as a
function of v when a = 0.5. The SNR in this test is also 30dB.
In Fig. 3 we show the RMSE of f; versus v, which varies from
1/N to 32/N. For the sake of benchmarking the performance,
the novel method is compared with CRLB, Matrix Pencil [4]
and the Hankel Total Least Square (HTLS) method [11], an
ESPRIT-type algorithm [3] with total least square minimisa-
tion. Both methods are state-of-art time-domain estimators
that are still able to outperform recently proposed methods
such as [6]. The proposed algorithm is implemented under
Q = 5,15 and 30. For Matrix Pencil, the pencil parameter
is set to L = |[N/3] = 21. For HTLS, the Hankel matrix
size is 21 X 44. From the figure we find that although the
proposed method has higher RMSE than the high resolution
methods at v = 1/N because of the unreliable maximum bin
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Fig. 4. RMSE of f; versus SNR using various algorithms.
5,000 Monte Carlo runs were used.
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Fig. 5. RMSE of |A,| versus SNR using various algorithms.
5,000 Monte Carlo runs were used.

search, it is capable of outperforming the other two methods
at 1.1/N < v <32/N using Q < 30.

Now we examine the RMSE of the parameter estimates
under different SNR using the proposed method, Matrix Pen-
cil and HTLS. The proposed algorithm is implemented using
QO = 2 and 5 while the algorithm parameters of Matrix Pencil
and HTLS are kept to be the same as the previous test. Figs.
4 to 7 show the RMSE of the parameter estimates obtained by
various algorithms versus SNR when v = 0.025 and @ = 0.5.
We find that for the proposed algorithm, the estimation bias
is reduced as the iteration number increases from Q = 2 to
Q =5, and there is no observable bias at 25dB when Q = 5.
It is also clear that the proposed algorithm can achieve smaller
RMSE than both Matrix Pencil and HTLS at all SNR.

4. CONCLUSION

In this paper, we have proposed a novel method for estimat-
ing the frequencies and complex amplitudes of multiple su-
perimposed complex exponentials in additive Gaussian noise.
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Fig. 6. RMSE of f, versus SNR using various algorithms.
5,000 Monte Carlo runs were used.
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Fig. 7. RMSE of |A;| versus SNR using various algorithms.
5,000 Monte Carlo runs were used.

The proposed algorithm utilises the A&M algorithm as the
fundamental estimator of a single component combining an
iterative leakage subtraction scheme. Benefit from the leak-
age subtraction, the error of the expected interpolated coef-
ficients can be gradually reduced during the iterative process
and so as the bias and variance of the parameter estimates. It
has been verified by simulation results that the proposed al-
gorithm can achieve accurate estimation of all the parameters
with the RMSE of the estimates extremely close to the CRLB.

5. REFERENCES

[1] K. Duda, L.B. Magalas, M. Majewski, and T.P. Zielin-
ski, “DFT-based estimation of damped oscillation pa-
rameters in low-frequency mechanical spectroscopy,’
IEEE Transactions on Instrumentation and Measure-
ment, vol. 60, no. 11, pp. 3608 —3618, 2011.

[2] T.P. Zielinski and K. Duda, “Frequency and damping

3460



estimation methods - an overview,” Metrology and Mea-
surement Systems, vol. 18, no. 4, pp. 505-528, 2011.

[3] R. Roy and T. Kailath, “ESPRIT - estimation of signal
parameters via rotational invariance techniques,” IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 37, no. 7, pp. 984-995, 1989.

[4] Y. Hua and T. K. Sarkar, “Matrix pencil method for esti-
mating parameters of exponentially damped/undamped
sinusoids in noise,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, no. 5, pp. 814—
824, 1990.

[5] R.O. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” I[EEE Transactions on Antennas
and Propagation, vol. AP-34, no. 3, pp. 276-280, 1986.

[6] W. Sun and H.C. So, “Efficient parameter estimation of
multiple damped sinusoids by combining subspace and
weighted least squares techniques,” in ICASSP, IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing - Proceedings, 2012, pp. 3509-3512.

[7] E. Aboutanios and B. Mulgrew, “Iterative frequency es-
timation by interpolation on Fourier coefficients,” IEEE
Transactions on Signal Processing, vol. 53, no. 4, pp.
1237-1242, 2005.

[8] E. Aboutanios, “A modified dichotomous search fre-
quency estimator,” IEEE Signal Processing Letters, vol.
11, no. 2 PART II, pp. 186—188, 2004.

[9] C. Yang and G. Wei, “A noniterative frequency estima-
tor with rational combination of three spectrum lines,”
IEEE Transactions on Signal Processing, vol. 59, no.
10, pp. 5065-5070, 2011.

[10] Y. Yao and S. M. Pandit, “Cramer-Rao lower bounds
for a damped sinusoidal process,” IEEE Transactions
on Signal Processing, vol. 43, no. 4, pp. 878-885, 1995.

[11] S. Vanhuffel, H. Chen, C. Decanniere, and P. Vanhecke,
“Algorithm for time-domain NMR data fitting based on
total least squares,” Journal of Magnetic Resonance,
Series A, vol. 110, no. 2, pp. 228 — 237, 1994.

3461



