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ABSTRACT

This paper is concerned with determining the number of cor-
related signals between two data sets when the number of
samples from these data sets is extremely small. In such a sce-
nario, a principal component analysis (PCA) preprocessing
step is commonly performed before applying canonical cor-
relation analysis (CCA). We present a reduced-rank version
of the hypothesis test based on the Bartlett-Lawley statistic,
which allows jointly determining the required PCA dimen-
sion reduction and the number of correlated signals.

Index Terms— Bartlett-Lawley statistic, canonical cor-
relation analysis, model-order selection, principal component
analysis, small sample support.

1. INTRODUCTION

Determining the number of correlated signals between two
data sets when the number of samples is extremely small is
an important problem with applications in areas as diverse
as biomedicine, climate science, and communications. The
standard approach for determining the number of correlated
signals between two zero-mean random vectors x ∈ IRn and
y ∈ IRm is to use canonical correlation analysis (CCA) [1].
If the (true) population auto-covariance matrices Rxx and Ryy
and the cross-covariance matrix Rxy are known, then the num-
ber of correlated signals is the number of nonzero canonical
correlations, which can be computed as the singular values
of the coherence matrix R−1/2

xx RxyR−1/2
yy [2]. If the popula-

tion covariances are not known, they need to be estimated
from M sample pairs (xi,yi), which may be arranged in data
matrices X = [x1, ...,xM] and Y = [y1, ...,yM] (with the mean
removed). If these samples are independent and identically
distributed (i.i.d.), the most common approach is to replace
the population covariances with the sample covariance ma-
trices R̂xx = XXT/M, R̂yy = YYT/M, and R̂xy = XYT/M,
and compute sample canonical correlations as the singular
values of the sample coherence matrix. Based on the sam-
ple canonical correlations, the number of correlated signals
may be estimated using information-theoretic criteria [3, 4],
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Mallow’s statistic [3], a marginal likelihood [5], or hypothesis
tests [6, 7].

All of these approaches assume sufficient sample support,
which often means that the number of samples M must be
significantly larger than the dimensions m and n. If this as-
sumption is violated, these approaches usually produce very
misleading results. In our paper, we focus on the challenging
scenario where M is very small. If M < m+ n, some sam-
ple canonical correlations are always identically one, which
means that they do not carry any information at all about
the true population canonical correlations [8]. Thus, a rank-
reduction preprocessing step is necessary before applying
CCA. The most common way of rank reduction is principal
component analysis (PCA), which extracts from x (and y,
respectively) those components that account for most of its
variance. This raises the obvious question of how many com-
ponents of x and y the PCA preprocessing step needs to keep
for CCA. This is a model-order selection problem.

In this paper, we present a reduced-rank version of the
hypothesis test based on the Bartlett-Lawley statistic [6, 9],
which allows jointly determining the required PCA dimen-
sion reduction and the number of correlated signals. We are
not aware of any other model-order selection technique that is
designed to handle the combined PCA-CCA approach in the
sample-poor regime. In this conference paper, our main aim
is to provide an intuitive exposition to our technique. A forth-
coming journal paper will contain a technically more rigorous
version, including proofs.

2. PROBLEM FORMULATION

We observe M i.i.d. sample pairs xi ∈ IRn, yi ∈ IRm that are
drawn from the two-channel measurement model

x = Axsx +nx,

y = Aysy +ny. (1)

The signals sx ∈ IRd+ f and sy ∈ IRd+ f are jointly Gaussian
with zero mean and cross-covariance matrix

E{sxsT
y }=

[
diag(ρ1, . . . ,ρd) 0d× f

0 f×d 0 f× f

]
,

where ρi is the unknown correlation coefficient between sx,i
and sy,i for i = 1, . . . ,d. Hence, the first d components of sx
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and sy are correlated,1 whereas the next f components are
independent between sx and sy. Without loss of generality,
we may assume the auto-covariance matrices E{sxsT

x } and
E{sysT

y } to be diagonal. The correlated components may be
stronger or weaker than the independent components. The
matrices Ax ∈ IRn×(d+ f ) and Ay ∈ IRm×(d+ f ) as well as the
dimensions d and f are deterministic but unknown. Without
loss of generality, Ax and Ay may be assumed to have full
column-rank. The noise nx ∈ IRn and ny ∈ IRm is independent
of the signals, zero-mean Gaussian, white spatio-temporally,
with power σ2

n per component.
From the data matrices X and Y we compute the sam-

ple covariance matrices R̂xx, R̂yy, and R̂xy. In the case of
small sample support, R̂xx and R̂yy may be singular, which
means that we cannot determine the sample canonical corre-
lations k̂i, i = 1, ..., p, p = min(m,n), as the singular values
of the sample coherence matrix R̂−1/2

xx R̂xyR̂−1/2
yy , because this

would require the computation of the matrix inverses R̂−1/2
xx

and R̂−1/2
yy . An easy workaround, following [8], is to first

compute the compact (or economy) singular value decompo-
sitions (SVDs) of the data matrices X = UxΣΣΣxVT

x and Y =
UyΣΣΣyVT

y (i.e., Vx ∈ IRn×p and Vy ∈ IRm×p) and then to deter-
mine the sample canonical correlations as the singular values
of VT

x Vy.
However, the fact that we may thus always compute the

sample canonical correlations k̂i, even in the case of low sam-
ple support, does not mean that the so determined k̂i’s are
actually meaningful. It has been shown in [8] that when M <
m+ n, at least m+ n−M sample canonical correlations will
be identically one regardless of the two-channel model that
generates the data samples. In such a small sample scenario,
the k̂i’s cannot be used to infer the number of correlated sig-
nals. Therefore, a rank-reduction preprocessing step is re-
quired, the most common way of which is PCA. A combined
PCA-CCA approach is the setup that we consider in our pa-
per. For such a setup, we would like to jointly determine the
required PCA dimension reduction and the number of corre-
lated signals d, when the sample support is extremely small,
possibly M < m+n.

3. HYPOTHESIS TEST

3.1. Effect of rank reduction on sample canonical corre-
lations

Consider again the SVDs of the data matrices X = UxΣΣΣxVT
x

and Y = UyΣΣΣyVT
y . With a PCA preprocessing step, only r, in-

stead of m or n, column vectors are kept in Vx and Vy, which
is denoted by Vx(:,1 : r) and Vy(:,1 : r). Thus, the ith sample
canonical correlation k̂i(r), which now depends on the rank r
of the PCA preprocessing step, can be found as the ith largest

1It is not difficult to generalize the results presented in this paper to the
complex case and the case where the number of independent signals in x and
y are different.
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Fig. 1. Effect of rank reduction on the sample canonical cor-
relations k̂i(r), averaged over 103 runs. The true population
canonical correlations are denoted by ∗.

singular value of VT
x (:,1 : r)Vy(:,1 : r). In order to avoid de-

fective unit sample canonical correlations, we must choose
2r ≤M and r ≤ p. This of course does not answer the ques-
tion of what the optimum choice for r would be.

Intuitively, it seems that r should be chosen large enough
to capture as much of the cross-correlated signal components
as possible without including too much noise. If the cross-
correlated components are weaker than some of the indepen-
dent components, this will inevitably mean that the PCA pre-
processing step also keeps those stronger independent com-
ponents. Hence, without noise, r would always be chosen as
a number between d and d + f .

The optimum choice for r is closely linked with the ef-
fect that it has on the sample canonical correlations. It can be
shown using Cauchy’s interlacing theorem (the proof will be
presented in the forthcoming journal paper) that k̂i(r + 1) >
k̂i(r). Choosing too large an r will thus lead to sample canoni-
cal correlations that are greater, possibly significantly greater,
than the true canonical correlations. On the other hand, if
r is not large enough, then the rank-reduced representation
does not contain all of the cross-correlated components, and
thus the sample canonical correlations are too small. Figure 1
shows these effects for M = 50, m = n = 40, d = 3 corre-
lated signals, and f = 2 independent signals, in the noise-free
case. In our shown scenario, the independent signals are 3 dB
stronger than the correlated signals, so the optimum choice for
r should be r = d + f = 5. Indeed, we observe that choosing
r > 5 leads to k̂i’s that are (significantly) too large, whereas
choosing r < 5 leads to k̂i’s, for i = 1,2,3, that are too small.
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Fig. 2. The histogram of the statistic C(s,r) (in blue) and the
probability density function of a χ2 distribution with (r− s)2

degrees of freedom (in red), which is the distribution of C(s,r)
under the null hypothesis s = d, for different PCA ranks r.
In all plots, M = 50, m = n = 40, s = 3, d = 3, and f = 2.
Histograms are computed from 105 statistically independent
trials. Also shown as vertical lines are the thresholds T (s,r)
for two different probabilities of false alarm.

3.2. Traditional hypothesis test

In the case of sufficient samples, the traditional hypothesis
test for determining d is a series of binary hypothesis tests.
Starting with s = 0, it tests the null hypothesis H0: d = s ver-
sus the alternative hypothesis H1: d > s. If H0 is rejected, s is
incremented and a new test of H0 vs. H1 is run. This proceeds
until H0 is not rejected or s = p is reached. The binary test is
based on the Bartlett-Lawley statistic [6, 9]

C(s) =−

(
M− s− m+n+1

2
+

s

∑
i=1

k̂−2
i

)
ln

p

∏
i=s+1

(
1− k̂2

i
)
.

When the data is Gaussian, the asymptotic distribution (as
M → ∞) of the Bartlett-Lawley statistic C(s) under H0 is
χ2
(m−s)(n−s) (with (m− s)(n− s) degrees of freedom). This

allows computation of the test threshold T (s) for a given
probability of false alarm.

3.3. A rank-reduced version of the hypothesis test

The Bartlett-Lawley statistic may be modified to account for
the PCA preprocessing as

C(s,r) =−

(
M− s− r− 1

2
+

s

∑
i=1

k̂−2
i

)
ln

r

∏
i=s+1

(
1− k̂2

i (r)
)
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Fig. 3. Same settings as in Fig. 2, except for s = 2.

for s = 0, . . . ,r− 1. It can be shown that, as long as the
PCA rank r is small relative to the number of samples M, the
reduced-rank statistic C(s,r) under H0 is still approximately
χ2
(r−d)2 . This can be observed in Figs. 2(a)–2(c), which use

the same settings as before (d = 3 correlated signals and f = 2
stronger interfering signals). However, for too large an r,
the statistic C(s,r) is no longer approximately χ2

(r−d)2 , as is
evident from Fig. 2(d) where r = 25 = M/2 (the largest r
that does not result in defective unit sample canonical corre-
lations). Thus, in a small sample scenario, r must be chosen
sufficiently smaller than M/2. This maximum allowable r we
will denote by rmax.

The challenge in the reduced-rank version of the hypoth-
esis test is to jointly determine r and d. We propose to select

d̂ = max
r=1,...,rmax

min
s=0,...,r

{s : C(s,r)< T (s,r)} . (2)

The r that leads to d̂ is the optimum rank for the PCA step.
In (2) the min operator chooses the smallest s such that the
statistic C(s,r) falls below the threshold T (s,r), which guar-
antees a given probability of false alarm. If there is no such
s, then it chooses s = r. This step is similar to the traditional
test, except that the threshold T (s,r) depends on both s and
r. The rule (2) is based on the fact that if r is not chosen
optimally, then it is likely that the min-step returns a number
smaller than d. Hence, the min-step is performed for all r
from 1 up to rmax, and the maximum result is chosen as d̂.

Let us explain the motivation for this test based on our ex-
ample. Since the interfering independent signals are stronger
than the correlated signals, r = d + f = 5 should be the opti-
mum choice for the PCA rank reduction. Figure 3(c) shows
that for this choice it is very likely that we would reject the
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Fig. 4. Comparison of proposed “max-min” approach with
canonical correlation test (CCT) [7], Akaike information cri-
terion (AICc) corrected for small sample sizes [10], minimum
description length (MDL) [4, 5], and the marginal likelihood
criterion (MLC) [5], for different sample sizes M. For all
competing techniques, the PCA preprocessing step keeps ap-
proximately 70% of the total energy in x and y each. The only
exception is SEV+MDL, where the approach in [11] is used
to select r.

(incorrect) null hypothesis d = 2 since the test statistic C(2,5)
is unlikely to fall below the threshold T (2,5) computed from
a χ2

3 distribution (unless the false alarm probability has been
set extremely small). The choices d < 2 are even more likely
to be rejected. On the other hand, Fig. 2(b) shows that the
(correct) null hypothesis d = 3 is likely not to be rejected.

Now what happens if r is not chosen to be the optimum
rank? If r < 5, then we do not capture all of the correlated sig-
nal components, and hence the test would decide for too small
a d. Indeed, Figs. 3(a) and 3(b) show that for r = 3 and r = 4,
it is likely that when testing H0 : d = 2 versus H1 : d > 2, the
test would not reject H0. On the other hand, if r > 5, then
it becomes more difficult to distinguish between the canoni-
cal correlations that are associated with the correlated signals
and those that are not, as was shown in Fig. 1. The effect can
be observed in Fig. 3(d), which for r = 15 shows the distri-
bution under H0 : d = 2 and the corresponding histogram for
C(2,15). The red line and the histogram overlap much more
than they do in Fig. 3(c), which means that it is rather likely
that H0 would not be rejected.

In summary, in all those cases where r is not chosen op-
timally, it is likely that the null hypothesis H0 : s = d would
not be rejected for some value smaller than the true d. If r is
chosen optimally, then the fact that H0 still is approximately
χ2 guarantees that we will not pick too large a number of cor-
related components. This justifies the decision rule (2).

4. NUMERICAL RESULTS

We performed Monte Carlo simulations to evaluate the per-
formance of our approach. The settings for our simulations
were n = m = 80, d = 3 correlated signals with correlation
coefficients 0.93, 0.85, and 0.78, f = 4 independent signals,
and rmax = min(b0.3Mc, p). The variance of each correlated
signal is 2, the variance of each independent signal is 0.5, and
the variance of each noise component is 1. Figure 4 shows
the probability of correctly choosing d̂ = 3 for different num-
ber of samples M for our max-min-approach for two different
probabilities of false alarm Pfa = 0.01 and 0.001. We see that
the max-min approach shows good performance from a very
small sample size onward. However, the performance does
depend on choosing the best Pfa, an issue which will be ad-
dressed in the journal paper.

Our technique is compared with several competing ap-
proaches in Fig. 4. None of these approaches works at all
without a PCA preprocessing step, which raises the question
of how to choose r. We have done this in two different ways.
First, we use the commonly employed rule of thumb “keep
approximately P% of the total energy in x and y in the PCA
preprocessing step.” Because in practice there is no simple
way of optimizing the performance with respect to P, we have
not attempted to do so and have chosen a typical number for
P (e.g., [12] suggests 70). Of course, the performance de-
pends crucially on choosing P, and the percentage P that leads
to the best performance depends very much on the scenario
(SNR, relative powers of correlated and interfering signals,
and strength of correlation). As an alternative, we use the ap-
proach [11], which is based on sample eigenvalues (denoted
SEV in Fig. 4) and works with small sample support. We note
that this approach aims to identify the number of signals in
one dataset, so it is not designed for a PCA-CCA setup. Nev-
ertheless, a combined SEV-MDL approach works quite well,
even though it is still outperformed by the max-min technique
by a significant margin.

5. CONCLUSION

In this paper, we have presented a technique that jointly de-
termines the dimension of the rank reduction and the number
of correlated signals using a combined PCA-CCA approach in
the sample-poor regime. Of course there is no free lunch. Our
technique only works if the number of signals is small com-
pared to the number of samples. This matches intuition: We
would not expect to be able to identify, say, 20 signals based
on 30 samples. Another issue concerns the selection of the
probability of false alarm. Setting it too high will lead to an
estimator that tends to overfit, setting it too low will generally
underfit. Achieving the best probability of detection requires
the right tradeoff. Our focus in this paper was an intuitive ex-
position; a more rigorous treatment, including proofs, will be
presented in a forthcoming journal paper.
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