SUBSPACE LEAKAGE ANALYSIS OF SAMPLE DATA COVARIANCE MATRIX
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ABSTRACT It is shown in [7] that in some scenarios (e.g. closely

Subspace based methods provide a good compromise bs aced sources), as the SNR and/or the number of data sam-

. es is reduced, the performance breakdown can occur before
tween performance and complexity. However, these methoxf

are exposed to performance breakdown at the low SNR and/ore subspace swap happens. In [7]’. numerical e>_<amp|es are
used to show that even a small portion of the estimated sig-

small sample size region. It has been known for a long tlmenaI subspace energy residing in the true noise subspace (de-

that a major reason for such performance breakdown is the . ;
. noted by inter-subspace leakage) can result in performance
subspace swap phenomenon. However, in some scenari

such as the case of closelv spaced sources. the breakdOVBi/rSeakdown. The notion of leakage comes originally from the
y sp ' rformance assessment based on perturbed subspace estima

happens before the subspace swap occurs. The reasonﬁgsn [8-12]. The results in [8] are asymptotic in the number

identified to be the intersubspace leakage where some por; . .
. : . . . .of samples, and the results in [9-12] are asymptotic in the ef
tion of the true signal subspace resides in the estimates noi

subspace. In this paper, we formally define the notion O¥ectlve SNR. Here, we formally define the subspace leakage

otion as a Frobenius norm of the perturbation matrix. Such

subspace leakage which can be used as a measure for pen%r- :
a measure, can be used for performance analysis and compar-

mance analysis and comparison of different methods used for : . L
L . ) ison of different methods which are used for estimating the
estimating the signal and noise subspaces. We further studS

the statistical properties of the subspace leakage forake c S\(Jbspaces from measured _data [13].’ [;4]' .
. : The subspace leakage is by definition a random variable,
of sample data covariance matrix.

and the analysis of its statistical properties can provide i
Index Terms— Eigenvalue decomposition, data covari- sights into the dynamics of the subspace estimation methods
ance matrix, subspace leakage. In this paper, the expected value and the variance of the sub-
space leakage are studied. We consider the classical method
of estimating the subspaces using the eigenvalue decomposi
tion of the sample data covariance matrix, and we derive the
Lorresponding subspace leakage and its mean and variance.

1. INTRODUCTION

Subspace methods have applications in array signal proce
ing [1], [2], channel estimation [3], multiuser detectiam i
communications [4], [5] and so on. Such methods are based 2. SYSTEM MODEL

on estimating the signal and noise subspaces from the singu-
lar value (Or eigenva|ue) decomposition of the data matnix ( Consider the SyStem model where the vector of measured data

the data covariance matrix). x(t) € CM*! attime instant € N is given by

The fidelity of the estimated subspaces to the true sub- 4 1
spaces plays a critical role in a successful parameter @&stim (t) = As(t) + n(t) @)
tion. At the low signal-to-noise ratio (SNR) and/or smalsa hereA € CM*K (M > K)is a structured matrix with
ple size region, the estimated subspaces can largely deVi"’}ﬁnknown parameters(t) € CX*1 is a vector containing un-
from the true ones, which can lead to performanc_e brea_ cnown signal amplitudes and(¢) € CM*! is a noise vector
down. In most studies, the cause of such breakdown is consi ftimet
ered to be the so-callesibspace swap where the “measured We consider the noise vector(t) to be independent
data is better approximated by some components of the noigf)

. ; m the signal vector at any time instant and the noise vec-
subspace than by the components of the signal subspace” [ r at other time instances. The noise vector also has the

*Supported in part by the Natural Science and Engineeringedtes  Circularly-symmetric complex j.Ointly_'Gauss?an dis_mbm
Council (NSERC) of Canada. Nc(0,021,;) where I, is the identity matrix of sizell.
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Considering the system model (1), the data covariancexnatriThereforep can be written as
R € CM*M s given by

I <, R
R2E{zt)z" (1)} = ASA" + o0l (2) p=c D& Pren (6)

whereS = E {s(t)s" (t)} € CX*¥ isthe signal covariance Using (4), the expression (6) can be further simplified as

matrix (assumed to be full rank) and)” and E{-} stand K K
for the Hermitian transposition and the expectation opesat  , — L &l (In— P)ey = 1 (K - ékHPék>
respectively. K k=1 K k=1
Let N number of snapshots (samples) be available. The 1 XK
basic method for estimating the data covariance matrix from =1 - — ZTr {ékékHP}
the samplex(¢) (1 < ¢ < N) is the following sample esti- K k=1
mate N
S, 1 " - 1——Tr{EE P}:l——Tr{PP} @)
R2 - ; o)z (t) (3)
whereR € CM*M is called the sample data covariance ma-WhereP = EE is the estimated signal projection matrix.
trix. Let AP £ P — P be the estimation error of the signal
LetA; < Ay < --- < Ay be the eigenvalues dR ar- Projection matrix. Then, using the properties Rt = P
ranged in nondecreasing order, andigt g, - , g, x be and Tr{ P} = K, the expression (7) can be rewritten as
the orthonormal noise eigenvectors associatedit\ii,tﬁg, e 1 1
Mi_k andeéy, ég, - - - ex bethe orthonormalsignal eigen- p=1- ETr{(P"'AP)P} - _ETr{APP}' (8)
vectors correspondlng O K+1; AM—K+42, A

Let aIsoG c CMX(M=K) gnd E ‘€ CM*K pe defined as Now, let AR £ R — R be the estimation error of the covari-

G 2 [91’ Gor o s QM K] and E 2 e1, éa,---, &x]. ance matrix. Define also the;(following matrix
The range spaces 6 andE represent the estimations of the o2 H 2 H
VAR - 02l =ASA" = A - 9
noise and signal subspaces, respectively. IniM ;( M=Ktk )ekek ©
and letVT € CM*M denote the pseudo-inverse Bf given
3. SUBSPACE LEAKAGE by
1
Consider the eigendecomposition of the data covariance ma- vi= Z ﬁekek (10)
trix R. FormG € CM*(M-K) agnd E € CM*K py plac- p=1 CMo KR
ing the noise and signal eigenvectors as the column& of wherely, ki1 < Ay_kao < -+ < Ay are theK largest
andE, respectively. The range spaceg@fandE represent eigenvaluesoR ande, es, - - , ek are their corresponding

the true noise and signal subspaces. Note that the matrix efgenvectors. It is shown in [15] that the series expansfon o
the eigenvector® , = [G E] € CM*M s a unitary matrix P based ol\R is given by

(QRQR_IM).ThereforeGGH+EEH_IMor PoPAGP+ . ts"P ... (11)
L _
PT+P=1Iu ) where
whereP+ 2 GG" andP 2 EE" are the true projection 6P = P*ARV' + VIARP* (12)

matrices into the noise and signal subspaces, respeciively and the rest of the terms are related by the following recur-
Ideally, the estimation of each signal eigenveétpl < .o

k < K) would perfectly fall in the true signal subspace. In
practice, however, the energy of the projectiorepfinto the  §"P = —P* (5""'P) ARV’ + P*AR (" 'P) V'

noise subspacéHPLékH%) is almost surely nonzero, which ~VIAR (6"~ 'P) P+ + VT (5" 'P) ARP*
can be viewed as the leakageéf into the true noise sub- n—1
space. Here, we define the subspace leakage as the aver- — Z P (§ip) (5n—ip) P
age value of the energy of the estimated signal eigenvectors i=1
leaked into the true noise subspace ie., n—1
+> P (5'P) ("'P) P*. (13)
pE Z 1P e 13- (5) i=1

2 The following lemma regarding the columns &' is in
Note thatP~* is a Hermitian matrix anc(PL) = P+ order.
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Lemma 1. Thecolumnsof VT belongto the signal subspace,
ie, PV =V

Proof. The following train of equalities is valid

pvt

T[]

k=

1

.
Il

< A

1
EHE —QekekH
AM—K+k — O

1
K

K 1
el
Z Z/\M K

eke
+k — OR g

k=1
1
2

K+k — Op

epell = v

(14)

In the last step, we used the fact tldte,. is equal tol for
i = k and it equals zero otherwise.

O

Using (8) together with the series expansiorfbi‘n (11),
(12), and (13) up to thé2P term, the facts thaPP+ =

PP -0, (PL)Q -

can compute as

B
Q

1
=T
K

P (sP) (5P)}

%Tr{P (PLARVT + VTARPL)

x (PLARVT +vi ARPL) }

— %Tr {PVTARPLPLARVT}

%Tr {VTARPLARVT} .

3.1. Expected value of subspace leakage

Computation of the expected value of the subspace leakage
requires considering the statistical propertied\d?. We use
the following two properties in our derivations [15].

P+, (P)’ = P, and Lemma 1, we

(15)

Lemma 2. For all matrices A;, A, € CM*M e have

E{ARA,AR} = %Tr {RA}R

and

(16)

E{Tr{ARA,} Tr {ARA,}} = %Tr {RA,RA,}. (17)

Using (15) and (16)F {p} can be computed as

E{p}

Q

%Tr{VTE {ARPLAR} VT}

%Tr{V* Tr{RPL}RVT}

1
—Tr
NK

{P-R}T{VIVIR}.

(18)

Since the range space of the matixs the same as the signal

subspace, we havB A = 0. As a result, T{PLR} can

be simplified as

Tr {PLR} Tr {PL (ASAH o2l )}:Tr {agPJ‘}
=0iTr{Iy — P} =02 (M- K). (19)

Furthermore, using (10) and the fact that the eigenvectiors o
Rare orthonormalVTVTR can be written as

AM—K+k
VIVIR = erel! (20)
; M-k — 02)° g

which results in

K
AM—
T{vivir! = M-E+k _ (21)
{ } ; (Aar—k 1k — 02)°
Finally, E {p} is obtained by substituting (19) and (21) in (18)

as M I
By~ 20K (22)

where

C— XK: AM—K+k (23)
2

(AM—K+k — Un)g.

Remark. We used the recurrence (13) up to theP term
while computingp in (15). Higher order terms can also be
used to estimate with higher accuracy. However, this unnec-
essary complication would only give a more accurate esmat
of the coefficientC in (22). It is of much higher significance
however thatF {p} is inversely proportional taV and pro-
portional too?.

3.2. Variance of subspace leakage
The variance of the subspace leakage is given by
Var(p) = E{p*} — [E{p}]>. (24)

Here, we show that Vap) is in the order ofl /N2,
Using (15) andAR=R—R, E {p*} can be computed as

1
E{r’} = 15

¥ E { [Tr{(fz— R) Pt (fz - R) VTVTHQ} .(25)
It was shown in (19) thaP* R = ¢2 P* which is also equal

to RP*. By using this fact and expanding the terms in (25),
E {p?} can be written as

1
E{p’} = 75

XE{ [Tr{RPLRVTVT} - anTr{RPlvTvT}

o2Tr {PLRVTVT} + odTr {vaTvT} ] 2}. (26)
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From Lemma 1, we know that the columns¥f belong to
the signal subspace and thereféte Vi = VI P+ = 0. As
aresult, all the terms in (26) except for the first term areadqu
to zero. ThereforelZ {p*} is given by

E{p*} = %E { {Tr{RPLEVTVTHQ}. 27)

The following lemma is used to proceed with the computatior
of E {p?}. For details about this property see [16].

Lemma 3. For all matrices A, Ay € CM*M e have

~ ~ 2
E { {Tr {RAlRAQH } _
[Tr {RA,RA,})* + %{Tr {RA;RA;RA,RA,)}
+Tr {RAlRAlRAQRAQ} +Tr {RAlRAQ}
1
«Tr {RA,} Tr {RA,)} } +0 <W) . (28)

Using Lemma 3E {p*} can be further computed as
E{p*} = %{ [Tr{RPLRVTVTHQ
2 LRVIVIRPLRVIV
+N{Tr{RP RVIVIRPLRVV }
+Tr {RPLRPLRVTVTRVT VT}
+Tr {RPLRVTVT}
xTr{RPL} Tr{RVTVT} Lo (%) }.(29)

Finally, using the facts thaRP- = P*R = ¢2P* and
Ptvi = vipl =0, itis concluded that

B} =0 () (30)
and from (22) and (24), Vép) is given by

Var(p)=0 <$) —C’#%i;{?wc? =0 (%) . (31)

4. NUMERICAL EXAMPLE

Consider the example of direction-of-arrival (DOA) estima
tion using a subspace based method. Ket 2 sources be
impinging on a uniform linear array (ULA) witd/ = 10
antenna elements from directiofis = 35° andf, = 37°.

T T T T T
—B— Monte Carlo simulations

—6—Theoretical

I
= I
o o
T

Subspace leakage (dB)

é é £0 1‘2 £4 1‘6 £8 26 2‘2 2‘4 2‘6 2‘8
SNR (dB)
Fig. 1. Expected value of subspace leakage versus SNR.

The expected value of the subspace leakage is estimated
using (7) and the Monte Carlo simulations witb® number
of trials. The theoretical value for the expected subspeale |
age is also obtained from (22) and (23). The results are shown
in Fig. 1. It can be seen that the curves obtained from the sim-
ulations are very close to those obtained from our thealktic
derivations. The difference between the curves is due to the
fact that in our derivations, we used up to the second order
term of the series expansion of the signal projection matrix
For very low SNR values, the subspace swap phenomenon oc-
curs where one or more of the noise eigenvectors are mistak-
enly taken for the signal eigenvectors and used for estigati
the subspace leakage. Consequently, the the curve obtained
by simulations is deviated from the curve obtained by theo-
retical derivations.

Monte Carlo simulations for the variance of the subspace
leakage have been presented in [17]. The results could not be
included here due to the lack of space.

5. CONCLUSION

In this paper, the subspace leakage as a cause for perfor-
mance breakdown of the subspace based methods has been
introduced. In the classical case of estimating the signal
and noise subspaces from the sample data covariance ma-
trix, we have computed the closed-form expression for the
subspace leakage. The expected value and the variance of

The interelement spacing is set to half a wavelength and tH&€e subspace leakage has been also studied, which presented

number of snapshots & = 10. The sources(t) are con-

the dependance of the subspace leakage on the SNR, sample

sidered to be independent to each other in time and to havwze, and other parameters. Finally, a numerical exame ha

the circularly-symmetric complex jointly-Gaussian distr
tion N (0, 0215) whereo? is the signal power. The SNR is
defined as SNRE 101log,, (02 /02).

been given to compare the theoretical derivations with Mont
Carlo simulations.
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