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ABSTRACT

Subspace based methods provide a good compromise be-
tween performance and complexity. However, these methods
are exposed to performance breakdown at the low SNR and/or
small sample size region. It has been known for a long time
that a major reason for such performance breakdown is the
subspace swap phenomenon. However, in some scenarios
such as the case of closely spaced sources, the breakdown
happens before the subspace swap occurs. The reason is
identified to be the intersubspace leakage where some por-
tion of the true signal subspace resides in the estimated noise
subspace. In this paper, we formally define the notion of
subspace leakage which can be used as a measure for perfor-
mance analysis and comparison of different methods used for
estimating the signal and noise subspaces. We further study
the statistical properties of the subspace leakage for the case
of sample data covariance matrix.

Index Terms— Eigenvalue decomposition, data covari-
ance matrix, subspace leakage.

1. INTRODUCTION

Subspace methods have applications in array signal process-
ing [1], [2], channel estimation [3], multiuser detection in
communications [4], [5] and so on. Such methods are based
on estimating the signal and noise subspaces from the singu-
lar value (or eigenvalue) decomposition of the data matrix (or
the data covariance matrix).

The fidelity of the estimated subspaces to the true sub-
spaces plays a critical role in a successful parameter estima-
tion. At the low signal-to-noise ratio (SNR) and/or small sam-
ple size region, the estimated subspaces can largely deviate
from the true ones, which can lead to performance break-
down. In most studies, the cause of such breakdown is consid-
ered to be the so-calledsubspace swap where the “measured
data is better approximated by some components of the noise
subspace than by the components of the signal subspace” [6].
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It is shown in [7] that in some scenarios (e.g. closely
spaced sources), as the SNR and/or the number of data sam-
ples is reduced, the performance breakdown can occur before
the subspace swap happens. In [7], numerical examples are
used to show that even a small portion of the estimated sig-
nal subspace energy residing in the true noise subspace (de-
noted by inter-subspace leakage) can result in performance
breakdown. The notion of leakage comes originally from the
performance assessment based on perturbed subspace estima-
tion [8–12]. The results in [8] are asymptotic in the number
of samples, and the results in [9–12] are asymptotic in the ef-
fective SNR. Here, we formally define the subspace leakage
notion as a Frobenius norm of the perturbation matrix. Such
a measure, can be used for performance analysis and compar-
ison of different methods which are used for estimating the
subspaces from measured data [13], [14].

The subspace leakage is by definition a random variable,
and the analysis of its statistical properties can provide in-
sights into the dynamics of the subspace estimation methods.
In this paper, the expected value and the variance of the sub-
space leakage are studied. We consider the classical method
of estimating the subspaces using the eigenvalue decomposi-
tion of the sample data covariance matrix, and we derive the
corresponding subspace leakage and its mean and variance.

2. SYSTEM MODEL

Consider the system model where the vector of measured data
x(t) ∈ CM×1 at time instantt ∈ N is given by

x(t) = As(t) + n(t) (1)

whereA ∈ CM×K (M > K) is a structured matrix with
unknown parameters,s(t) ∈ CK×1 is a vector containing un-
known signal amplitudes andn(t) ∈ CM×1 is a noise vector
at timet.

We consider the noise vectorn(t) to be independent
from the signal vector at any time instant and the noise vec-
tor at other time instances. The noise vector also has the
circularly-symmetric complex jointly-Gaussian distribution
NC(0, σ2

nIM ) whereIM is the identity matrix of sizeM .
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Considering the system model (1), the data covariance matrix
R ∈ CM×M is given by

R , E
{
x(t)xH(t)

}
= ASAH + σ2

nIM (2)

whereS = E
{
s(t)sH(t)

}
∈ CK×K is the signal covariance

matrix (assumed to be full rank) and(·)H and E{·} stand
for the Hermitian transposition and the expectation operators,
respectively.

Let N number of snapshots (samples) be available. The
basic method for estimating the data covariance matrix from
the samplesx(t) (1 ≤ t ≤ N ) is the following sample esti-
mate

R̂ ,
1

N

N∑

t=1

x(t)xH(t) (3)

whereR̂ ∈ CM×M is called the sample data covariance ma-
trix.

Let λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂M be the eigenvalues of̂R ar-
ranged in nondecreasing order, and letĝ1, ĝ2, · · · , ĝM−K be
the orthonormal noise eigenvectors associated withλ̂1,λ̂2, · · ·,
λ̂M−K andê1, ê2, · · · , êK be the orthonormal signal eigen-
vectors corresponding tôλM−K+1, λ̂M−K+2, · · · , λ̂M .
Let alsoĜ ∈ CM×(M−K) andÊ ∈ CM×K be defined as
Ĝ ,

[
ĝ1, ĝ2, · · · , ĝM−K

]
and Ê , [ê1, ê2, · · · , êK ].

The range spaces of̂G andÊ represent the estimations of the
noise and signal subspaces, respectively.

3. SUBSPACE LEAKAGE

Consider the eigendecomposition of the data covariance ma-
trix R. FormG ∈ CM×(M−K) andE ∈ CM×K by plac-
ing the noise and signal eigenvectors as the columns ofG

andE, respectively. The range spaces ofG andE represent
the true noise and signal subspaces. Note that the matrix of
the eigenvectorsQR = [G E] ∈ CM×M is a unitary matrix(
QRQH

R = IM

)
. Therefore,GGH + EEH = IM or

P⊥ + P = IM (4)

whereP⊥
, GGH andP , EEH are the true projection

matrices into the noise and signal subspaces, respectively.
Ideally, the estimation of each signal eigenvectorêk (1 ≤

k ≤ K) would perfectly fall in the true signal subspace. In
practice, however, the energy of the projection ofêk into the

noise subspace
(
‖P⊥êk‖2

2

)
is almost surely nonzero, which

can be viewed as the leakage ofêk into the true noise sub-
space. Here, we define the subspace leakage as the aver-
age value of the energy of the estimated signal eigenvectors
leaked into the true noise subspace, i.e.,

ρ ,
1

K

K∑

k=1

‖P⊥êk‖
2
2. (5)

Note thatP⊥ is a Hermitian matrix and
(
P⊥
)2

= P⊥.

Therefore,ρ can be written as

ρ =
1

K

K∑

k=1

ê
H

k P⊥êk. (6)

Using (4), the expression (6) can be further simplified as

ρ =
1

K

K∑

k=1

ê
H

k (IM − P ) êk =
1

K

(
K −

K∑

k=1

ê
H

k P êk

)

= 1 −
1

K

K∑

k=1

Tr
{

êkê
H

k P
}

= 1 −
1

K
Tr
{
ÊÊ

H

P
}

= 1 −
1

K
Tr
{
P̂P

}
(7)

whereP̂ , ÊÊ
H

is the estimated signal projection matrix.
Let ∆P , P̂ − P be the estimation error of the signal

projection matrix. Then, using the properties thatP 2 = P

and Tr{P } = K, the expression (7) can be rewritten as

ρ = 1 −
1

K
Tr {(P + ∆P )P } = −

1

K
Tr {∆P P } . (8)

Now, let∆R , R̂ − R be the estimation error of the covari-
ance matrix. Define also the following matrix

V ,R − σ2
nIM=ASAH=

K∑

k=1

(
λM−K+k − σ2

n

)
ekeH

k (9)

and letV † ∈ C
M×M denote the pseudo-inverse ofV given

by

V † =

K∑

k=1

1

λM−K+k − σ2
n
ekeH

k (10)

whereλM−K+1 ≤ λM−K+2 ≤ · · · ≤ λM are theK largest
eigenvalues ofR ande1, e2, · · · , eK are their corresponding
eigenvectors. It is shown in [15] that the series expansion of
P̂ based on∆R is given by

P̂ = P + δP + · · · + δnP + · · · (11)

where
δP = P⊥∆RV † + V †∆RP⊥ (12)

and the rest of the terms are related by the following recur-
rence

δnP = −P⊥
(
δn−1P

)
∆RV † + P⊥∆R

(
δn−1P

)
V †

−V †∆R
(
δn−1P

)
P⊥ + V †

(
δn−1P

)
∆RP⊥

−
n−1∑

i=1

P
(
δiP

) (
δn−iP

)
P

+

n−1∑

i=1

P⊥
(
δiP

) (
δn−iP

)
P⊥. (13)

The following lemma regarding the columns ofV † is in
order.
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Lemma 1. The columns of V † belong to the signal subspace,
i.e., P V † = V †.

Proof. The following train of equalities is valid

PV † = EEH

K∑

k=1

1

λM−K+k − σ2
n
ekeH

k

=

K∑

i=1

eie
H

i

K∑

k=1

1

λM−K+k − σ2
n
ekeH

k

=

K∑

k=1

1

λM−K+k − σ2
n
ekeH

k = V †. (14)

In the last step, we used the fact thateH
i

ek is equal to1 for
i = k and it equals zero otherwise.

Using (8) together with the series expansion ofP̂ in (11),
(12), and (13) up to theδ2P term, the facts thatPP⊥ =

P⊥P = 0,
(
P⊥
)2

= P⊥, (P )
2

= P , and Lemma 1, we
can computeρ as

ρ ≈ −
1

K
Tr {−P (δP ) (δP )}

=
1

K
Tr
{
P
(
P⊥∆RV † + V †∆RP⊥

)

×
(
P⊥∆RV † + V †∆RP⊥

)}

=
1

K
Tr
{
P V †∆RP⊥P⊥∆RV †

}

=
1

K
Tr
{
V †∆RP⊥∆RV †

}
. (15)

3.1. Expected value of subspace leakage

Computation of the expected value of the subspace leakage
requires considering the statistical properties of∆R. We use
the following two properties in our derivations [15].

Lemma 2. For all matrices A1, A2 ∈ CM×M , we have

E {∆RA1∆R} =
1

N
Tr {RA1}R (16)

and

E {Tr {∆RA1} Tr {∆RA2}} =
1

N
Tr {RA1RA2} . (17)

Using (15) and (16),E {ρ} can be computed as

E {ρ} ≈
1

K
Tr
{
V †E

{
∆RP⊥∆R

}
V †
}

=
1

K
Tr

{
V † 1

N
Tr
{

RP⊥
}

RV †

}

=
1

NK
Tr
{
P⊥R

}
Tr
{
V †V †R

}
. (18)

Since the range space of the matrixA is the same as the signal

subspace, we haveP⊥A = 0. As a result, Tr
{

P⊥R
}

can

be simplified as

Tr
{
P⊥R

}
=Tr

{
P⊥

(
ASAH + σ2

nIM

)}
=Tr

{
σ2

nP⊥
}

=σ2
nTr {IM − P } = σ2

n (M − K) . (19)

Furthermore, using (10) and the fact that the eigenvectors of
R are orthonormal,V †V †R can be written as

V †V †R =

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 ekeH

k (20)

which results in

Tr
{
V †V †R

}
=

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (21)

Finally,E {ρ} is obtained by substituting (19) and (21) in (18)
as

E {ρ} ≈
σ2

n (M − K)

NK
C (22)

where

C =

K∑

k=1

λM−K+k

(λM−K+k − σ2
n)

2 . (23)

Remark. We used the recurrence (13) up to theδ2P term
while computingρ in (15). Higher order terms can also be
used to estimateρ with higher accuracy. However, this unnec-
essary complication would only give a more accurate estimate
of the coefficientC in (22). It is of much higher significance
however thatE {ρ} is inversely proportional toN and pro-
portional toσ2

n .

3.2. Variance of subspace leakage

The variance of the subspace leakage is given by

Var(ρ) = E
{
ρ2
}
− [E {ρ}]2 . (24)

Here, we show that Var(ρ) is in the order of1/N2.
Using (15) and∆R=R̂−R, E

{
ρ2
}

can be computed as

E
{
ρ2
}

=
1

K2

×E

{[
Tr
{(

R̂ − R
)

P⊥
(
R̂ − R

)
V †V †

}]2}
.(25)

It was shown in (19) thatP⊥R = σ2
nP⊥ which is also equal

to RP⊥. By using this fact and expanding the terms in (25),
E
{
ρ2
}

can be written as

E
{
ρ2
}

=
1

K2

×E

{[
Tr
{
R̂P⊥R̂V †V †

}
− σ2

nTr
{

R̂P⊥V †V †
}

−σ2
nTr
{
P⊥R̂V †V †

}
+ σ4

nTr
{
P⊥V †V †

}]2}
. (26)
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From Lemma 1, we know that the columns ofV † belong to
the signal subspace and thereforeP⊥V † = V †P⊥ = 0. As
a result, all the terms in (26) except for the first term are equal
to zero. Therefore,E

{
ρ2
}

is given by

E
{
ρ2
}

=
1

K2
E

{[
Tr
{

R̂P⊥R̂V †V †
}]2}

. (27)

The following lemma is used to proceed with the computation
of E

{
ρ2
}

. For details about this property see [16].

Lemma 3. For all matrices A1, A2 ∈ CM×M , we have

E

{[
Tr
{

R̂A1R̂A2

}]2}
=

[Tr {RA1RA2}]
2

+
2

N

{
Tr {RA1RA2RA1RA2}

+Tr {RA1RA1RA2RA2} + Tr {RA1RA2}

×Tr {RA1}Tr {RA2}
}

+ O

(
1

N2

)
. (28)

Using Lemma 3,E
{
ρ2
}

can be further computed as

E
{
ρ2
}

=
1

K2

{[
Tr
{

RP⊥RV †V †
}]2

+
2

N

{
Tr
{
RP⊥RV †V †RP⊥RV †V †

}

+Tr
{

RP⊥RP⊥RV †V †RV †V †
}

+Tr
{

RP⊥RV †V †
}

×Tr
{

RP⊥
}

Tr
{

RV †V †
}

+ O

(
1

N2

)}
.(29)

Finally, using the facts thatRP⊥ = P⊥R = σ2
nP⊥ and

P⊥V † = V †P⊥ = 0, it is concluded that

E
{
ρ2
}

= O

(
1

N2

)
(30)

and from (22) and (24), Var(ρ) is given by

Var(ρ)=O

(
1

N2

)
−

σ4
n (M − K)

2

N2K2
C2 = O

(
1

N2

)
. (31)

4. NUMERICAL EXAMPLE

Consider the example of direction-of-arrival (DOA) estima-
tion using a subspace based method. LetK = 2 sources be
impinging on a uniform linear array (ULA) withM = 10
antenna elements from directionsθ1 = 35 ◦ andθ2 = 37 ◦.
The interelement spacing is set to half a wavelength and the
number of snapshots isN = 10. The sourcess(t) are con-
sidered to be independent to each other in time and to have
the circularly-symmetric complex jointly-Gaussian distribu-
tion NC(0, σ2

s I2) whereσ2
s is the signal power. The SNR is

defined as SNR, 10 log10

(
σ2

s /σ2
n

)
.
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Fig. 1. Expected value of subspace leakage versus SNR.

The expected value of the subspace leakage is estimated
using (7) and the Monte Carlo simulations with105 number
of trials. The theoretical value for the expected subspace leak-
age is also obtained from (22) and (23). The results are shown
in Fig. 1. It can be seen that the curves obtained from the sim-
ulations are very close to those obtained from our theoretical
derivations. The difference between the curves is due to the
fact that in our derivations, we used up to the second order
term of the series expansion of the signal projection matrix.
For very low SNR values, the subspace swap phenomenon oc-
curs where one or more of the noise eigenvectors are mistak-
enly taken for the signal eigenvectors and used for estimating
the subspace leakage. Consequently, the the curve obtained
by simulations is deviated from the curve obtained by theo-
retical derivations.

Monte Carlo simulations for the variance of the subspace
leakage have been presented in [17]. The results could not be
included here due to the lack of space.

5. CONCLUSION

In this paper, the subspace leakage as a cause for perfor-
mance breakdown of the subspace based methods has been
introduced. In the classical case of estimating the signal
and noise subspaces from the sample data covariance ma-
trix, we have computed the closed-form expression for the
subspace leakage. The expected value and the variance of
the subspace leakage has been also studied, which presented
the dependance of the subspace leakage on the SNR, sample
size, and other parameters. Finally, a numerical example has
been given to compare the theoretical derivations with Monte
Carlo simulations.
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