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Abstract—We consider the joint estimation of structured covariance
matrices. We assume the structure is unknown and perform the esti-
mation using heterogeneous training sets. More precisely, we are given
groups of measurements coming from centered normal populations with
different covariance matrices. Assuming that all these covariance matrices
span a low dimensional affine subspace in the space of symmetric
matrices, our aim is to determine this structure. It is then utilized to
improve the covariance estimation. We provide an algorithm discovering
and exploring the underlying covariance structure and analyze its
error bounds. Numerical simulations are presented to illustrate the
performance benefits of the proposed algorithm.

Index Terms—Structured covariance estimation, joint covariance esti-
mation.

I. INTRODUCTION

Estimation of covariance matrices is a basic problem in multivariate
statistics. It arises in diverse applications such as signal processing
[1], genomics [2], financial mathematics [3] and others. Given n
copies of a p dimensional real random vector with bounded second
moments, the most natural estimator of their covariance is the Sample
Covariance Matrix (SCM), being a consistent estimator due to the law
of large numbers.

High dimensional covariance estimation is the setting in which
the number of measurements n is comparable to the dimension p.
In this scenario, the performance of the SCM deteriorates and the
approximation becomes poor [4, 5]. The most popular way to improve
the behavior of an estimator in such situation is to introduce prior
knowledge on the covariance matrix. The particular form of prior
knowledge may differ: it may be given as an a prior distribution over
the possible parameter values, as in Bayesian framework, or as an
edge case, be given as a structure constraint.

In this article we focus on covariance estimation when the true
covariance matrix is assumed to possess a linear structure. There
are plenty of examples of such settings in the literature. In many
engineering applications the physical properties of the measurements
impose natural linear constraints on their covariance. A partial list of
examples include Toeplitz [6–8], circulant [9, 10], sparse and banded
[11, 12], persymmetric [13], factor models [14], permutation invariant
[15] including proper complex and proper quaternion covariances
represented as real matrices, etc.

An important common feature of the papers listed above is that they
consider a single and static environment where the structure of the
true covariance matrix, or at least the class of structures, as in sparse
case, is known in advance. Often, this is not the case and techniques
are needed to learn the structure from the observations. A typical
approach is to consider multiple datasets sharing a similar structure
but non homogeneous environments [16]. This is, for example, the
case in covariance estimation for classification across multiple classes
[17]. A related problem addresses the problem of tracking a time
varying covariance throughout a single stream of data, where it
is assumed that the structure changes at a slower rate than the
covariances themselves [18]. Here too, it is natural to divide this
stream of data into independent blocks of measurements. From a
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different perspective, the authors of [19, 20] assumed the populations
covariances were picked at random from a Wishart distribution with
unknown parameters and sought for their center.

Our goal is to introduce and analyze an algorithm for learning the
underlying affine structure of a family of covariance matrices, which
can also be adapted to a time-varying environment. More exactly,
given a few groups of Gaussian measurements having different
covariance matrices each, our target is to determine the underlying
low-dimensional linear space containing all the covariances. The
discovered subspace can be further used to improve the covariance
estimation by projecting any unconstrained estimator on it. Most
of the previous works considered particular cases of this method,
e.g. factor models, entry-wise linear structures like in sparse and
banded models, or specific patterns like in Toeplitz, circulant, proper
and other models. Our method suggests to treat the SCM of the
heterogeneous populations as vectors in the space of matrices and is
based on application of principal component analysis to learn their
low-dimensional structure. It generalizes the previous approaches and
proposes a generic way to determine and utilize the joint linear
structure of covariances for better estimation.

The paper is organized as following: first we introduce notations,
state the problem and provide examples motivating the work. Then
we derive a lower performance bound, propose our new algorithm and
outline the derivation of its upper error bound. In the end of the paper
we provide numerical simulations demonstrating the advantages of
the proposed algorithm.

We denote by S(p) the l = p(p+1)
2

dimensional linear space of
p×p symmetric real matrices and by P(p) ⊂ S(p) the closed cone of
positive semi-definite matrices. Id stands for the d×d identity matrix.
For a matrix M its Moore-Penrose generalized inverse is denoted by
M†. For any two matrices M and P we denote by M⊗P their tensor
(Kronecker) product. ‖·‖F denotes the Frobenius norm and ‖·‖2 - the
spectral norm of matrices, and ‖·‖ - the Euclidean norm of vectors.
For any symmetric matrix S, we denote by s = vech (S) a vector
obtained by stacking the columns of the lower triangular part of S into
a single column vector. In addition, given an l dimensional column
vector m we denote by mat (m) the inverse operator constructing a
p× p symmetric matrix such that vech (mat (m)) = m. Due to this
natural linear bijection below we often consider subsets of S(p) as
subsets of the column space Rl without specifying this explicitly. In
addition, let vec (S) be a p2 dimensional vector obtained by stacking
the columns of S, and denote by I its indices corresponding to the
related elements of vech (S).

II. PROBLEM FORMULATION

We focus on the heterogeneous measurements model, namely
assume we are given K ≥ l = p(p+1)

2
groups of real p dimensional

normal random vectors

xi
k ∼ N (0,Qk), i = 1, . . . , n, k = 1, . . . ,K, (1)

with n independent samples in each group. We assume that

Qk ∈ P(p), k = 1, . . . ,K, (2)

belong to an r dimensional affine subspace of S(p). Our main goal
is to estimate this subspace and use it to improve the covariance
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estimation. In the analysis we will assume r is known in advance,
but we will also explain how to determine it from the data.

Let us list the most common types of affine covariance structures.
• Diagonal: The simplest example of a structured covariance is a

diagonal matrix. This is often the case when the noise vectors are
uncorrelated or can be assumed uncorrelated with great precision.
In this case r = p.

• Banded: A natural approach to covariance modeling is to quantify
the statistical relation using the notion of independence or cor-
relation, which corresponds to sparsity in the covariance matrix
[11, 12]. Assuming that i-th element of the random vector is
uncorrelated with the h-th if |i−h| > b leads to b-banded structure,
also known as time varying moving average models. The subspace
of symmetric b-banded matrices constitutes an r = (2p−b)(b+1)

2

dimensional subspace inside S(p).
• Circulant: The next common type of structured covariance matri-

ces are symmetric circulant matrices, defined as

Q =


q1 q2 q3 . . . qp
qp q1 q2 . . . qp−1

...
...

...
. . .

...
q2 q3 q4 . . . q1

 , (3)

with the natural symmetry conditions such as qp = q2, etc. Such
matrices are typically used as approximations to Toeplitz matrices
which are associated with signals that obey periodic stochastic
properties for example the yearly variation of temperature in
a particular location. A special case of such processes are the
classical stationary processes, which are ubiquitous in engineering,
[9, 10]. Symmetric circulant matrices belong to an r = p/2
dimensional subspace if p is even and (p+ 1)/2 if it is odd.

• Toeplitz: A natural generalization of circulant are Toeplitz ma-
trices. In stationary time series, the covariance between the i-
th and the h-th components depend only on the the difference
|i− h|. This kind of processes is encountered very often in many
engineering areas including statistical signal processing, radar
imaging, target detection, speech recognition, and communications
systems, [7, 8, 21, 22]. In the Toeplitz case r = p

• Proper Complex: Many physical processes can be conveniently
described in terms of complex signals. The most frequently appear-
ing model of complex Gaussian noise is circularly symmetric [23].
Such noise is completely characterized by its mean and rotation
invariant hermitian covariance matrix QC . We denote centered
proper complex distributions as

x ∼ CN (0,QC).

The real representation of the covariance reads as

QR =
1

2

(
Re(QC) − Im(QC)
Im(QC) Re(QC)

)
. (4)

We see that QR possess a simple linear structure. Matrices of
dimension p× p, possessing such structure constitute an r = p/2
dimensional subspace of S(p).

In the following it will be convenient to use a single matrix notation
for the multiple covariances

Y = [vech (Q1) . . . vech (QK)]. (5)

Using this notation, the prior subspace knowledge is equivalent to a
low rank constraint

Y = UZ + u0 · [1, . . . , 1], (6)

where U ∈ Rl×r is a basis of the r dimensional subspace spanned
by Q1, . . . ,QK , Z = [z1, . . . , zK ] ∈ Rr×K and u0 is the intercept

vector. Essentially our problem reduces to estimation of Y assuming
it is low-rank.

III. LOWER PERFORMANCE BOUNDS

Before addressing possible solutions for the above covariance
structure estimation problem, it is instructive to examine the inherent
performance bounds. For this purpose, we use the Cramer-Rao Bound
(CRB) to lower bound the Mean Squared Error (MSE) of any
unbiased estimator Ŷ of Y, defined as

MSE = E
[∥∥∥Ŷ −Y

∥∥∥2
F

]
. (7)

The MSE is bounded from below by the trace of the correspond-
ing CRB matrix. To compute this matrix, for each i we stack the
measurements xi

k from (1) into a single vector

xi =

xi
1

...
xi
K

 ∼ N (0,Q), i = 1, . . . , n. (8)

where

Q(U,Z) = diag {Q1, . . . ,Qk}
= diag {mat (u0 + Uz1) , . . . ,mat (u0 + UzK)} . (9)

For simplicity in this section we assume u0 and r are both known.
The Jacobian matrix of this parametrization reads as

J =
∂Q

∂(U,Z)
=


∂q1
∂U

∂q1
∂z1

0 . . . 0
∂q2
∂U

0 ∂q2
∂z2

. . . 0
...

...
...

. . .
...

∂qK
∂U

0 0 . . . ∂qK
∂zK



=


zT
1 ⊗ Il U 0 . . . 0

zT
2 ⊗ Il 0 U . . . 0
...

...
...

. . .
...

zT
K ⊗ Il 0 0 . . . U

 ∈ RlK×(lr+Kr), (10)

where we have used the following notation:

∂qk

∂U
=

[
∂qk

∂u1

∂qk

∂u2
. . .

∂qk

∂ur

]
, (11)

and the formulas

∂qk

∂uj
=
∂Uzk

∂uj
= zjkIl,

∂qk

∂zk
=
∂Uzk

∂zk
= U. (12)

Note that

rank (J) = lr +Kr − r2 ≤ min[lK, lr +Kr], (13)

reflecting the fact that the parametrization of Q or Y by the pair
(U,Z) is unidentifiable. Indeed for any invertible matrix A, the
pair (UA,A−1Z) fits as good. Due to this ambiguity the matrix
FIM(U,Z) is singular and in order to compute the CRB we use
the Moore-Penrose pseudo-inverse of FIM(U,Z) instead of inverse,
as justified by [24]. Given n i.i.d. samples xi, i = 1, . . . , n, we obtain

CRB =
1

n
JFIM(U,Z)†JT . (14)

For the Gaussian population the matrix FIM(U,Z) is given by

FIM(U,Z) =
1

2
JTdiag

{[
Q−1

k ⊗Q−1
k

]
I,I

}
J, (15)
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where [M]I,I is the square submatrix of M corresponding to the
indices from I. The bound on the MSE is therefore given by

MSE ≥ Tr (CRB) =
1

n
Tr
(
FIM(U,Z)†JTJ

)
=

2

n
Tr

([
JTdiag

{[
Q−1

k ⊗Q−1
k

]
I,I

}
J
]†

JTJ

)
. (16)

To get more insight on this expression we bound it from below.
Denote λ = mink λp(Qk), where λp(M) is the minimal eigenvalue
of M to get a bound

MSE ≥ 2λ2

n
Tr

([
JTJ

]†
JTJ

)
=

2λ2

n
rank (J) =

2λ2

n
(lr +Kr − r2). (17)

The dependence on the model parameters here is similar to that
obtained by [25] for the problem of low-rank matrix reconstruction.
An important quantity is the marginal MSE per one matrix Qk,
which is proportional to

MSE

K
∼ lr − r2

Kn
+
r

n
. (18)

IV. ALGORITHM

In this section we present our algorithm for joint estimation of the
covariances Q1, . . . ,QK utilizing the representation (6) of Y. For
this purpose consider the SCM of the k-th group of measurements

Sk =
1

n

n∑
i=1

xk
i xkT

i , (19)

and denote
sk = vech (Sk) . (20)

Compute the SCM average

û0 =
1

K

K∑
k=1

sk, (21)

and consider the matrix

Ŷ′ = [s1 − û0, . . . , sK − û0], (22)

The SVD of Ŷ′ reads as

Ŷ′ = Û

(
Σ̂ 0

0 Σ̂n

)
ŴT = [Û1Û2]

(
Σ̂ 0

0 Σ̂n

)
[Ŵ1Ŵ2]

T ,

(23)
where the singular values are sorted in the decreasing order and Σ̂ ∈
Rr×r . We propose to use the matrix

Ỹ′ = Û1Σ̂ŴT
1 , (24)

as an estimator of
Y′ = UZ. (25)

This approach is based on Eckart-Young theorem and we refer to it
as Truncated SVD (TSVD) method [26]. Finally, for the estimator of
Y we have

Ỹ = Ỹ′ + û0 · [1, . . . , 1]. (26)

In the real world settings the rank r is rarely known in advance
and one needs to estimate it from the data before applying the TSVD
technique. It is intuitive to think about rank estimation, followed by
TSVD, simply as thresholding of the data singular values. A large
variety of thresholding techniques exist, e.g. hard thresholding, see
[27] and references therein. We propose another method based on

taking the largest singular values carrying a fixed percentage of the
power of signal depending on the Signal to Noise Ratio

SNR =
‖Y′‖2F

E
[∥∥∥Ŷ′ −Y′

∥∥∥2
F

] . (27)

In our work as a rule of thumb we took a SNR+r/l
SNR+1

power threshold,
when the SNR was known or its estimation otherwise. Due to lack
of space we postpone the detailed explanation of this rule for the full
paper.

A. Upper Performance Bound

In this section we outline the performance analysis of the proposed
TSVD algorithm assuming r and u0 are known. Introduce the SVD
of Y′

Y′ = [U1U2]

(
Σ 0
0 0

)
[W1W2]

T ,Σ ∈ Rr×r, (28)

and denote by R the zero mean noise matrix

R = Ŷ′ −Y′. (29)

Theorem 1. When r and u0 are known,∥∥∥Ỹ −Y
∥∥∥
F
≤
√
r ‖R‖2

( √
2

σr(Σ)

(
σ1(Σ) + 1 + ‖R‖2

)
+ 1

)
.

(30)

Proof. Use the triangle inequality, Weyl’s and Wedin’s theorems
(4.11 and 4.2 from [28]) to get∥∥∥Ỹ −Y

∥∥∥
F
=
∥∥∥Ỹ′ −Y′

∥∥∥
F
≤
∥∥∥Û1Σ̂Ŵ1 −U1Σ̂Ŵ1

∥∥∥
F

+
∥∥∥U1Σ̂Ŵ1 −U1ΣŴ1

∥∥∥
F
+
∥∥∥U1ΣŴ1 −U1ΣW1

∥∥∥
F

≤
∥∥∥Σ̂∥∥∥

2

∥∥∥Û1 −U1

∥∥∥
F
+
∥∥∥Σ̂−Σ

∥∥∥
F
+ σ1(Σ)

∥∥∥Ŵ1 −W1

∥∥∥
F

≤
(∥∥∥Σ̂∥∥∥

2
+ σ1(Σ)

)√
2r
‖R‖2
σr(Σ)

+
∥∥∥Σ̂−Σ

∥∥∥
F

≤
√
2r

1 + σ1(Σ)

σr(Σ)
‖R‖2 +

∥∥∥Σ̂−Σ
∥∥∥
2

(√
r +

√
2r

σr(Σ)
‖R‖2

)
≤
√
r ‖R‖2

( √
2

σr(Σ)

(
σ1(Σ) + 1 + ‖R‖2

)
+ 1

)
. (31)

As expected, Theorem 1 shows that the Frobenius norm or the
error is proportional to the squared root of the rank rather than
the dimension. Intuitively, this captures the correct dependence on
the model parameters. A rigorous analysis of the proposed TSVD
algorithm requires much stronger tools of Random Matrix Theory.
We postpone it to the full publication.

V. NUMERICAL SIMULATIONS

For our first experiment we took a Toeplitz model with p =
10,U0 = Ip. The true covariances were positive definite matrices
generated as Qk = U0 +

∑r
j=1 z

j
kDj/ ‖Dj‖F , where Dj has ones

on the j-th and −j-th subdiagonals and zeros otherwise, r = p− 1
and zjk were i.i.d. uniformly distributed over the interval [− 1

2
, 1
2
].

Figure 1 shows the dependence of the MSE on n when K = l.
In the unknown r case we took α = SNR+r/l

SNR+1
power threshold for

our TSVD algorithm. For comparison we also plot the MSE-s of
the SCM and its projection onto the known subspace structure and
the true CRB bound given by (16). In the second experiment we
set n = 100 fixed and explored the dependence of the MSE on the
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Fig. 1. TSVD algorithm performance.
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Fig. 2. Marginal TSVD algorithm performance, n = 100.

number of groups K in the same setting as before. Figure 2 verifies
that the marginal MSE depends on K as predicted by formula (18).

For the second experiment we considered the problem of tracking
a time-varying covariance in complex populations. We used the Data
Generating Process (DGP) of Patton and Sheppard, [29], which
allows for dynamically changing covariances in the spirit of a
multivariate GARCH-type model, [30, 31]. One of variations of this
DGP suggests the following data model:

xt = H
1/2
t yt, t = 1, . . .Kn, (32)

where we assumed the generating data to be proper complex, yt ∼
CN (0, I) and defined the hermitian time-varying covariance Ht to
change according to the law

Ĥt = (1− β)Ht−1 + βMtM
H
t , (33)

Ht =
Ĥt∥∥∥Ĥt

∥∥∥
F

, t = 1, . . .Kn. (34)
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Fig. 3. Learning the low-dimensional subspace with time.

Here Mt are random p × p matrices with i.i.d. standard normally
distributed entries, H0 is arbitrary positive-definite hermitian and β ∈
[0, 1].

The low-dimensional structure appearing in this setting is due to
properness of the covariances (see (4)). In order to explore it, the
obtained complex data was represented as double-sized real mea-
surements. Each n clock ticks we formed the SCM S t

n
of the last n

measurements, where t was the last time count. Then we concatenated
the vector vech

(
S t

n

)
to the matrix Y t

n
−1 ∈ Rl×( t

n
−1) of growing

size to obtain Y t
n

and applied our TSVD algorithm to it. Thus, our
structure knowledge was updated every n ticks, and we expected
the error of the covariance estimation to decrease with time. We
performed the experiment with p = 4,K = 100, n = 30, β = 0.01
and used 90%-power threshold to discover the underlying low-
dimensional structure. Figure 3 compares the temporal behavior of
the MSEs of the SCM, TSVD applied to it and the projection of
SCM on the subspace spanned by proper covariances. The MSEs
were obtained by averaging the squared errors over 10000 iterations.
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