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ABSTRACT

Today’s wireless sensor networks provide the possibility to monitor

physical environments via small low-cost wireless devices. Given

the large amount of sensed data, efficient and robust classification

becomes a critical task in many applications. Typically, the devices

must operate under stringent power and communication constraints

and the transmission of observations to a fusion center (FC) is, in

many cases, infeasible or undesired. A challenging research ques-

tion in such cases is the design of data clustering and classifica-

tion rules when each sensor collects a set of unlabelled observa-

tions that are drawn from a known number of classes. We propose

two robust distributed hybrid classification algorithms, i.e., the Dif-

fusion K-Medians and the Communicationally Efficient Distributed

K-Medians. An extensive performance analysis in comparison to a

benchmark algorithm is provided that investigates the error rates in

dependence of different parameters of a distributed sensor network,

and also considers communication cost. Our proposed algorithms,

which are insensitive to outliers and various parameters, are applica-

ble to on-line classification problems and scale well w.r.t. the number

of classes.

Index Terms— K-medians, diffusion, distributed classification,

robust, outlier

1. INTRODUCTION

Recent advances in hardware technology, distributed signal process-

ing and communication networking are currently leading to a world

of ambient sensing, processing and communication. Ad-hoc wireless

sensor networks (WSN), consisting of small low-cost nodes with a

sensing unit, processing capability, a battery or secondary power

supply, and a radio for wireless communication are able to carry

out complex signal processing tasks. In a 2014 survey, application

scenarios, such as ambient intelligence, pervasiveness, monitoring,

have been declared to be of high research interest and market rel-

evance [1]. A challenging research question in such applications

is the design of data clustering and classification rules when each

sensor collects a set of unlabelled observations that are drawn from

a known number of classes.

In such scenarios, the devices must operate under stringent power

and communication constraints and the transmission of observations

to a fusion center (FC) is, in many cases, infeasible or undesired:

Performing in-network classification without a FC is motivated by
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considerations that deal with privacy and secrecy when agents may

not be comfortable sharing their data with remote fusion centers. In

other cases, such as, e.g., in cloud computing, the data itself may

already be available in dispersed locations. Furthermore, distributed

methods are able to perform classification, without collapsing en-

tirely in case of a FC failure.

This motivates looking for in-network classification algorithms

where a minimum amount of information is exchanged among

single-hop neighbors. Although several methods have been pro-

posed in the last years that deal with distributed data clustering and

classification [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], most of them still assume

the presence of a fusion center [5, 7], are hardly real-time capable

[3] or need a set of prelabelled training data for training beforehand

[6, 11]. Several distributed adaptive strategies, such as incremental,

consensus, and diffusion algorithms have been developed in the

last few years. For a recent overview, and a comparison of these

techniques, see [12]. In [9], a distributed K-Means (DKM) algo-

rithm that uses the consensus strategy was proposed. We provide

an alternative hybrid diffusion-based approach which presents a

classification method based on preliminary clustering of the data.

Since many areas of engineering today concern problems where the

distribution of the measurements is far from Gaussian as it contains

outliers, which cause the distribution to be heavy tailed [13], our

algorithm uses K-Medians clustering, which is less sensitive to out-

liers than the K-Means.

Contributions: Two robust in-network distributed classification

algorithms, i.e., the Diffusion K-Medians and the Communication-

ally Efficient Diffusion K-Medians, are proposed. It is shown that

the performance of the first algorithm can be approached with the

second algorithm with a considerably lower between-sensor com-

munication cost. Unlike the DKM, which serves as a benchmark,

the proposed algorithms are applicable to real-time classification

problems. Furthermore, they are robust against outliers in the fea-

ture vectors. An extensive simulation-based performance analysis is

provided that investigates the error rates in dependence of different

WSN parameters, and also considers communication and computa-

tional costs.

Organization: Section 2 introduces the notation, provides the prob-

lem formulation, and briefly revisits the DKM [9], which serves as a

benchmark. Section 3 is dedicated to the proposal and description of

two robust diffusion-based classification algorithms, while Section

4 provides an extensive Monte-Carlo simulation study. Section 5

concludes the paper and provides future research directions.
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2. PROBLEM FORMULATION AND EXISTING

APPROACH

Consider a network with J nodes distributed over some geographic

region. Two nodes are connected if they are able to communicate

directly with each other. The set of nodes connected to node j ∈
{1, ..., J} =: J is called the neighborhood of node j and is denoted

by Bj ⊆ J . The communication links between the nodes are sym-

metric and a node is always connected to itself. The number of nodes

connected to node j is called the degree of node j and is denoted by

|Bj |.
The task of the distributed network is to gather data and to perform

distributed unsupervised classification. Every node j collects a set

of Nj observations Dj = {dj(n), n = 1, ..., Nj} of dimension q,

where dj(n) denotes the nth observation at sensor j. The entries

of the observation vectors are defined as being features and are as-

sumed to be independent of each other.

Each observation dj(n) is assumed to belong to a certain class Ck

with k ∈ 1, ..., K with k denoting the indice of the given class. The

total number of classes K is assumed to be known a priori. The aim

is for every node j to assign each observation dj(n) to a class k
by communicating with its neighbors instead of transmitting all ob-

servations to a master node. The classification should be real-time

capable so that a new observation can be assigned on-line without

the necessity of all recorded observations being available.

2.1. Distributed K-Means (DKM)

As a benchmark, this paper considers the Distributed K-Means

(DKM) algorithm by Forero et. al., for details, see [9]. The basic

idea of the DKM is to cluster the observations into a given number

of groups, such that the sum of squared-errors is minimized that is

arg min
wk,µ

p
jk

(n)

1

2

J
∑

j=1

K
∑

k=1

Nj
∑

n=1

µ
p
jk(n)‖dj(n)−wk‖

2, (1)

where wk is the cluster center for class k, µjk(n) ∈ [0, 1] is the

membership coefficient of dj(n) to class k, and p ∈ [1,+∞] is a

tuning parameter. The DKM iteratively solves the surrogate aug-

mented Lagrangian of a distributed clustering problem based on

(1) while exchanging the resulting parameters among neighboring

nodes.

Although the DKM achieves very good performance in many sce-

narios, the main drawback is that the clustering is performed based

on all available data and that it may need a high number of iterations

until it converges to its final solution. This property makes the DKM

difficult to use in real-time applications where an observation needs

to be classified right away. In addition to that, the performance of the

DKM is limited in scenarios where feature vectors contain outliers.

3. PROPOSED METHODS

In this section, two new robust in-network distributed classification

algorithms are presented.

3.1. Diffusion K-Medians

The proposed classification methodology begins with a local initial-

ization phase: each sensor j collects a number of Nt observations

and performs K-medians clustering on these observations, which

partitions the Nt features {dj(n), n = 1, ..., Nt} into K sets Ck

so that the ℓ1-distance within each cluster is minimized:

argmin
wjk

K
∑

k=1

Nt
∑

n=1

‖dj(n)−wjk‖1 (2)

Each center is the component-wise median of the points of each

cluster.

The features are assigned to each class Ck based on the minimal

ℓ1-distances and are stored in an initial matrix S0
jk . Based on all

elements in Ck, the initial cluster centroid ψ0
jk for each node j is

estimated using the median

ψ̂
0

jk = median
(

S
0
jk

)

, (3)

This completes the initialization phase, which is followed by the

exchange phase1, where each new observation dj(n), n = Nt +
1, ..., Nj , is classified as follows:

1. Exchange Step: Each node j exchanges its stored observations

Sjk(n) with its neighbors i ∈ Bj . The own and received observa-

tions for each class are stored in the matrix V jk(n).
2. Adaptation Step: Each node j determines a preliminary estimate

ψ̂jk(n) based on the observations stored in V jk(n) analogously to

(3) with V jk(n) replacing S0
jk.

3. Exchange Step: Each node exchanges ψ̂jk(n) with its neighbors.

4. Combination Step: Each node j adapts its estimates according to

ŵjk(n) = α · ψ̂jk(n) + (1− α) ·
∑

b∈Bj/{j}

abk(n) · ψ̂bk(n) (4)

with α denoting a factor which trades off the weight given to the own

and the neighborhood estimates, respectively. Further,

abk(n) = 1/
√

‖ψ̂bk(n)− ψ̂jk(n)‖ (5)

with subsequent normalization such that
∑

b∈Bj/{j}
abk(n) = 1.

In the next step, observation dj(n) is classified by evaluating its

Euclidean distance to each of the class centroid estimates ŵjk(n)

dEucl(dj(n), ŵjk(n)) =
√

(dj(n)− ŵjk(n))T (dj(n)− ŵjk(n))
(6)

and assigns the observation to Ck for which (6) is minimized.

3.2. Communicationally Efficient (CE) Diffusion K-Medians

Since the Diffusion K-Medians is demanding in terms of communi-

cation between sensors, which is a major contributor the devices en-

ergy consumption [14], an algorithm is proposed which yields simi-

lar performance with reduced communication between the nodes.

The local clustering phase is identical with the Diffusion K-Medians,

except that Sjk(n) is not exchanged between nodes (see Table 1:

Steps 1-9), while the classification procedure is modified as follows:

1. Adaptation Step: Based on the feature vectors dj(m),m =
1, ..., n stored in Sjk(n), each node calculates its intermediate esti-

mates ψ̂jk(n) according to (3).

2. Exchange Step: Instead of broadcasting the entire feature vectors,

the nodes share only their estimates of the cluster centers ψ̂jk(n)
with their neighbors.

3. Combine Step: Each sensor j combines its neighbor’s estimates

analogously to (4) in order to obtain improved estimates ŵjk(n).
4. Classification Step: Based on the estimates determined in the pre-

vious step, the distance measure of the feature vector to the estimates

of the class centroids is evaluated and dj(n) is classified.

1Since the order in which the cluster centroids are stored by K-Medians
might differ between nodes, a joint ordering of the storage and exchange of
the data, is necessary. The re-sorting takes place via the Euclidean distance
relative to an arbitrary reference node ∈ Bj .
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Algorithm: Diff. K-Medians

Local Clustering Phase

1. for the first Nt feature vectors do

2. for all j = 1, ..., J do

3. perform K-medians according to (2)

4. calculate ψ̂
0

jk via (3)

5. store classified data in S0
jk

6. end for

7. for all j = 1, ..., J do

8. perform synchronisation of cluster estimates

9. end for

10. for all j = 1, ..., J do

11. exchange Sjk(n) within Bj

12. store received data in V jk(n)
13. end for

14. end for

Distributed Classification Phase

15. for n = Nt + 1, .., Nj do

16. for all j = 1, ..., J do

17. broadcast an update for V jk(n) within Bj

18. end for

19. for all j = 1, ..., J do

20. determine ψ̂jk(n) (3)

21. end for

22. for all j = 1, ..., J do

23. broadcast ψ̂jk(n) within Bj

24. end for

25. for all j = 1, ..., J do

26. determine ŵjk(n) via (4)

27. calculate distances from dj(n)
to all ŵjk(n) by evaluating (6)

28. assign dj(n) to class Ck which minimizes (6)

29. add dj(n) to V jk(n)
30. end for

31. end for

Table 1. Summary of the Diffusion K-Medians algorithm.

Algorithm: ”CE Diff. K-Medians”

Distributed Classification Phase

11. for n = Nt + 1, .., Nj do

12. for all j = 1, ..., J do

13. determine ψ̂jk(n) according to (3)

14. broadcast ψ̂jk(n) within Bj

15. end for

16. for all j = 1, ..., J do

17. determine ŵjk(n) via (4)

18. calculate distances from dj(n)
to all ŵjk(n) by evaluating (6)

19. assign dj(n) to class Ck which minimizes (6)

20. add dj(n) to Sjk(n)
21. end for

22. end for

Table 2. Summary of the Communicationally Efficient Diffusion

K-Medians algorithm.

4. NUMERICAL EXPERIMENTS

This section evaluates the performance of the proposed algorithms

numerically in terms of the error rate in a broad range of conditions.

Furthermore, the computational and communication costs are con-

sidered. Our proposed methods are compared to the DKM [9].

4.1. Simulation Setup

The simulations are based on a scenario with J = 10 nodes

which are randomly distributed in space. Each node is connected

to the 4 neighboring nodes which have the smallest Euclidean

distance. The classification is performed for K = 3 classes.

Each sample dj(n) is drawn at random from class k for which

the densitiy is given by N (dj(n);wk,Σk) with class centers

w1 = (1, 1, 1)T , w2 = (1, 4, 3)T , w3 = (3, 1, 1)T and covariance

matrices Σ1 = (1, 0.01, 0.01)T I3, Σ2 = (0.16, 4, 0.16)T I3 and

Σ3 = (0.25, 0.01, 4)T I3. Note that the classes overlap partially and

the standard deviations for each direction in feature space differ con-

siderably. Each node has Nj = 80 samples available, Nt = 20 for

the initialization and Nj−Nt for real-time classification. K-Medians

is run 3 times, and the result which minimizes ( refeq:kmedians) is

used for the classification. The tuning parameters for the benchmark

algorithm DKM are p = ν = 2, and t = 10, 20, 50, 100 iterations

having all Nj = 80 samples per node available. All displayed

results are averages over 100 Monte-Carlo runs and the error rate

devides the number of correctly classified feature vectors by the total

number of feature vectors excluding the outlying data.

4.2. Simulation Results

Figure 1 shows the error rate as a function of the available number

of feature vectors.
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Fig. 1. Error rate as a function of the available number of feature

vectors per node.

The performance for varying distances between the clusters is

depicted in Fig. 2, where each integer on the x-axis describes one

of the following scenarios: In Scenario 1 the clusters overlap par-

tially with cluster centers w1 = (1, 1, 1)T , w2 = (1, 2, 3)T , w3 =
(2, 1, 1)T and covariance matrices as defined above. For Scenario 2

w1 = (1, 1, 1)T , w2 = (1, 4, 3)T , w3 = (3, 1, 1)T . For Scenario

3 we define w1 = (1, 1, 1)T , w2 = (0, 5, 3)T , w3 = (3, 3, 7)T

and Scenario 4 is executed with w1 = (1, 1, 1)T , w2 = (0, 7, 5)T ,

w3 = (4, 4, 9)T .

Fig. 3 depicts the error rate as a function of the percentage of

zero-mean additive Gaussian outliers with N (dj(n);wk, 100I3).
We next investigate the robustness against skewed outlier distri-

butions. Outliers are generated from a chi-square distribution with

different degrees of freedom v for each class: For C1, a random vec-

tor of dimension q with v1 = 3 is added, while for C2 a vector with
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v2 = 5 is subtracted and for C3 a different random number is drawn

for each direction in space: v3,1 = 4, v3,2 = 1 and v3,3 = 7 for x,

y and z direction, respectively, whereby v3,2 = 1 is subtracted from

the y-component. In this setup w1 = (1, 1, 1)T , w2 = (0, 5, 3)T ,

w3 = (3, 3, 7)T , all other parameters are unchanged.
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Fig. 2. Error rate in dependence of the distance between the cluster

centroids.
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Fig. 3. Error rate for different percentages of Gaussian outliers.

4.3. Computational Time and Communication Cost

A performance measure of great importance is the communication

cost, which contributes stronger to the energy consumption in the

wireless devices than the computational cost [14]. Fig. 5 depicts

the communication costs for the standard scenario in dependence

the neighborhood cardinalities. The communication cost is specified

in data units, where one matrix entry forms one unit. until the final

amount of centers is reached. A significantly

Especially in practical applications with low-cost devices, com-

putational capabilities may be limited. The computation time as a

function of the dimension of the data is thus considered in Fig. 6.

5. CONCLUSIONS

Two robust diffusion-based distributed hybrid classification algo-

rithms were proposed. A performance comparison to the DKM was

provided and the proposed methods showed promising results. The

proposed methods are readily extendible so as to encompass other

robust estimators of the cluster centers, e.g., of the M -type. Further,

other distance measures, such as the (robust) Mahalanobis distance

can be integrated by exchanging the locally computed covariance

matrices.
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Fig. 4. Error rate for different percentages of chi-sqaured outliers

with different degrees of freedom v for each class.
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Fig. 5. Communication cost for different neighborhood sizes.
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Fig. 6. Computation time in dependence of the data dimension.
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