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ABSTRACT

This paper addresses the problem of linear least squares

(LS) estimation of a vector x from linearly related ob-

servations. In spite of being unbiased, the original LS

estimator suffers from high mean squared error, espe-

cially at low signal-to-noise ratios. The mean squared

error (MSE) of the LS estimator can be improved by in-

troducing some form of regularization based on certain

constraints. We propose an improved LS (ILS) esti-

mator that approximately minimizes the MSE, without

imposing any constraints. To achieve this, we allow

for perturbation in the measurement matrix. Then we

utilize a bounded data uncertainty (BDU) framework

to derive a simple iterative procedure to estimate the

regularization parameter. Numerical results demon-

strate that the proposed BDU-ILS estimator is superior

to the original LS estimator, and it converges to the best

linear estimator, the linear-minimum-mean-squared er-

ror estimator (LMMSE), when the elements of x are

statistically white.

Index Terms— linear estimation, least squares,

regularization, mean squared error, bounded data un-

certainty.

1. INTRODUCTION

This paper addresses the linear estimation problem of a

vector quantity x from an observation vector

y = Ax+ v, (1)

where A ∈ R
N×M is a known linear transformation

matrix and v is white noise with unknown variance.

The vector x is assumed to be stochastic with unknown

distribution. The elements of x are assumed to be in-

dependent but not necessarily identically distributed.

Such problem arises in may areas of science and engi-

neering including communications, economics, signal

processing, seismology, and control [1].

Owing to the lack of prior information on x, usu-

ally, a least squares (LS) approach is used. Ordinary

LS estimation attempts to minimize the squared error

||y − Ax||22, where ||.||2 is the l2 norm [2]. Contrary

to ordinary LS estimation, the objective in a typical es-

timation scenario is to minimize mean squared error

(MSE) between x and its estimate, x̂. In general, this

goal cannot be achieved by applying the LS approach.

However, the attractiveness of the LS approach stems

from its agnostic nature to the probabilistic structure of

the data and its ease of implementation [2].

Throughout the years, several methods have been

proposed to improve the MSE performance of the LS

estimator. Among the alternatives are the regulariza-

tion known in the statistical literature as the ridge es-

timator [3], the shrunken estimator [4], the covariance

shaping LS estimator [5], and the weighted LS [6]. A

common feature in all these methods is the need for

some prior information in a form of a constraint. De-

pending on the nature of this constraint, the solution

of the LS problem takes one of various forms. In this

paper, we are particularly interested in the simple reg-

ularized LS form given by [3, 7]

x̂ = (ATA+ γI)−1ATy, (2)

where γ is a real positive value, I is the identity matrix

of appropriate dimension, and (.)T is the matrix trans-

pose operation. For γ = 0, (2) gives the ordinary LS

estimator, which is unbiased. For γ > 0, we have a

biased estimator [3].

It is proven in [3] that there always exists a pos-

itive value γ such that the estimator (2) offers lower

MSE than the ordinary LS estimator. However, ways

of finding a suitable γ that minimizes the MSE are not

precisely known. The goal of this paper is to find an ap-

proach through which we can find a value of γ that ap-

proximately minimizes the MSE. The difficulty arises

from the fact that this value of γ is always dependent on

the unknown vector x, as will be shown subsequently.

In this paper, we focus on the case where N ≥ M
and the problem has a unique solution. More specifi-

cally, the emphasis is on the case where N is not much

larger than M , which is the case where the ordinary LS

estimator suffers most. We adopt a bounded data un-

certainty (BDU) approach [8]. In the BDU model, the

measurement matrix is not precisely known due to an

unknown perturbation. In other words, the actual mea-

surement matrix is A+∆; we know A and a bound on

the 2-induced norm of the perturbation∆. This formu-

lation leads to the same LS solution (2), where γ is esti-

mated by solving a secular equation. The solution (2),

under BDU assumptions, targets minimizing a maxi-

mum error criterion, which is not necessarily minimiz-
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ing the MSE. Although the BDU approach is proposed

as a robust estimation method, in this paper, we employ

the technique as a regularization tool that allows us to

obtain a value of γ to minimize the MSE of the regular-

ized LS estimator (2). It will be shown that by using a

number of approximations, the required value of γ can

be obtained without any prior conditions on x, or the

perturbation ∆. In the case where x has a white statis-

tic, it will be shown that the improved LS solution con-

verges to the superior linear minimum mean squared

error (LMMSE) estimator.

2. THE BASIC BDU APPROACH

The data model for the BDU approach is [8]

y = (A+∆)x+ v, (3)

where A ∈ R
N×M is full column rank, and ∆ ∈

R
N×M is a perturbation or uncertainty in A. To find

an estimate of x, a min-max approach is pursued in [8]

min
x

max ||(A+∆)x− (y − v)||2

subject to: ||∆||2 ≤ η, ||vd||2 ≤ ηv, (4)

where ||.||2 denotes the l2 norm in the case of a vector,

and the 2-induced norm in the case of a matrix, η is a

known upper bound on the 2-induced norm of ∆, and

ηv is the upper bound on the l2 norm of vd that turns

out to be irrelevant and disappears from the final so-

lution. The solution of (4) is shown to be exactly the

regularized LS solution (2). Using the singular value

decomposition (SVD) A = UΛV T , the parameter γ
is obtained by solving the secular equation [8]

yTU(Λ2 − η2I)(Λ2 + γI)−2UTy = 0. (5)

It is shown in [8] that, under certain conditions on η,

(2) is the unique solution of the problem in (4).

In this work, we utilize the BDU model for regu-

larization purpose. We want to solve the problem of

estimating x based on the model (1). As a form of reg-

ularization, we seek to find a perturbation of the singu-

lar values of A that improves the LS solution. Equiva-

lently, we want to perturb A into a matrix A +∆ and

use the latter matrix to reduce the MSE. Since, we have

no knowlege of ∆, the problem is equivalent to that of

finding x based on the BDU model (3).

The BDU estimator suffers from the shortcomings

shared with other LS estimators. First, the method is

not guaranteed to minimize the MSE, as it is optimizing

the error in a min-max sense. Second, the method is de-

pendent on the choice of the parameter η, whose value

determines the quality of the estimator. In the robust es-

timation problem, η is used to quantify the uncertainty

in A which is dictated by the real world. In the regu-

larization case, since we have no specific bound on the

perturbation we want to add, η needs to be judiciously

controlled such that the MSE is minimized. In the fol-

lowing sections, we show how the BDU approach can

be used as a regularizer to approximately minimize the

MSE, without having to make any assumptions on the

parameter η.

3. MINIMIMIZING THE MSE OF THE

REGULARIZED LS ESTIMATOR

Starting from the LS estimator (2) for the problem in

(1), we define the overall MSE of the estimator as

MSE = tr
{

E
[

(x̂− x)(x̂− x)T
]}

, (6)

E and tr(.) are the expectation and matrix trace opera-

tors, respectively. By substituting (1) in (2), substitut-

ing the result in (6) and manipulating, we obtain

MSE =

σ2
vtr

[

B−1
γ BoB

−1
γ

]

+ γ2tr
[

B−1
γ CxB

−1
γ

]

, (7)

where Bγ ,
(

ATA+ γI
)

, Bo = Bγ |γ=0, and Cx

is the covariance matrix of x. The symbol γ in (7)

actually represents the expected value of γ in (2) (γ
varies for each realization of y); for simplicity the same

notation γ is reused.

To obtain insightful results from the analysis, we

assume that x is statistically white, with variance equal

to σ2
x. Thus, we can replace Cx with σ2

xI. This results

in

MSE = σ2
vtr

(

B−1
γ BoB

−1
γ

)

+ σ2
xγ

2tr
(

B−2
γ

)

. (8)

In the case where the statistic of x is not truly white,

(8) can still hold in an approximate sense when Cx is

diagonally dominant. In such case, σ2
x is given by the

average σ2
x = tr(Cx)/M . The accuracy of such an ap-

proximation is due to the trace operation in (7), i.e.,

tr[B−1
γ CxB

−1
γ ]. Replacing Cx with the average diag-

onal matrix σ2
xI, when x is non-white, is found to be

a good approximation in many cases. It is easy to see

that the MSE has two components; a component that

varies with σ2
v , and a component that is dependent on

σ2
x. Using A = UΛV T , (8) can be written as

MSE = σ2
vtr

[

Λ
2
(

Λ
2 + γI

)

−2
]

+ σ2
xγ

2tr
[

(

Λ
2 + γI

)

−2
]

. (9)

Now, we can readily obtain the gradient of the MSE

by differentiating (9) with respect to γ, which, after

some algebraic manipulations, yields the simple form

MSE = 2tr
[

(

2σ2
xγ − 2σ2

v

)

Λ
2
(

Λ
2 + γI

)

−3
]

. (10)

By setting MSE = 0, we find the location of the sta-

tionary point:

γopt =
σ2
v

σ2
x

. (11)

By analyzing the sign of MSE to the left and right of

γopt, it can be shown that this stationary point is a min-

imum. The result in (11) signifies that, under white-

ness conditions, when the LS estimator (2) attains its
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best performance, it actually converges to the Bayesian

LMMSE estimator [2]. For white noise and non-white

x, the LMMSE estimator of x is given by [2]

x̂LMMSE = (ATA+ σ2
vC

−1
x )−1ATy, (12)

in which case the best LS estimation performance will

not coverage exactly to that of the LMMSE estimator

(which is the optimal linear estimator for the problem

under consideration). However, the improved (regular-

ized) LS estimator will always outperform the ordinary

LS, as will be demonstrated later in this paper.

The question now is how to find the value of γopt. If

we have knowledge of the signal and noise second or-

der statistics, we may pursue an optimal LMMSE esti-

mator. The parameter γopt can also be derived from the

signal-to-noise ratio (SNR). However, estimating the

SNR without prior knowledge on x is a tedious process

that requires a large number of observations [9, 10]. In

the absence of pertinent information, we need to find a

way to estimate γopt without any assumptions on the

signals. In the following section, we show how the

BDU framework can be used to facilitate this task.

4. BDU-BASED IMPROVED LS (BDU-ILS)

ESTIMATION

As discussed in the preceding sections, the regular-

ization process based on the BDU can be viewed as

searching for a perturbation matrix, ∆, with a bounded

norm that improves the LS problem solution. The so-

lution of the BDU regularization problem is given by

the combination of (2) and (5). The best performance

offered by the BDU approach (as well as any other

LS approach whose final estimator takes the form (2))

occurs when γ = γopt (see Eq. (11). The value of γ
is obtained by solving (5), which is dependent on the

choice of the parameter η. Eq. (5) can be manipulated

to the form

η2 =
tr
[

Λ
2
(

Λ
2 + γI

)

−2
UT

(

yyT
)

U
]

tr
[

(Λ2 + γI)
−2

UT (yyT )U
] . (13)

It can easily be seen that the value of η, required to pro-

duce a certain value of γ, is dependent on the observa-

tion vector y. To obtain a useful expression for η, let us

think of η as an average value over many realizations

of the observation vector y. Based on this perception,

yyT can be replaced with its expected value E(yyT ),
which, based on (1), can be expressed as

E
(

yyT
)

= ACxA
T + σ2

vI. (14)

Now, replacing yyT in (13) with E(yyT ) from (14),

replacing Cx with σ2
xI, using the SVD, and manipu-

lating, we obtain

η2 =
tr
[

Λ
2
(

Λ
2 + γI

)

−2
(

Λ2 +
σ2

v

σ2
x

I
)]

tr
[

(Λ2 + γI)−2
(

Λ2 +
σ2
v

σ2
x

I
)] . (15)

Finally, we can insert γopt to replace σ2
v/σ

2
x, as in

Eq. (11), and manipulate to obtain

η2 =
tr
[

Λ
2
(

Λ
2 + γI

)

−2 (
Λ2 + γoptI

)

]

tr
[

(Λ2 + γI)−2 (Λ2 + γoptI)
] . (16)

We will use (16) as a surrogate of (5). For the optimal

choice η = ηopt, we have γ = γopt. Thus, based on

(16), pair of η and γ are optimal if they satisfy

η2 =
tr
[

Λ
2
(

Λ
2 + γI

)

−1
]

tr
[

(Λ2 + γI)
−1

] . (17)

Eq. (17) dictates the the relationship between the best

choice of the bound on the the perturbation matrix

norm (ηopt), on the one hands, and the corresponding

γopt that minimizes the MSE, on the other hand. If

Eq. (5) is solved for γ when η = ηopt, we will obtain

γ = γopt.
Remark 1: From Eq. (16), it can be proven that η2

is a strictly increasing function of γ ∈ [0,+∞). The

same applies for η2 and γ in (17). This observation

constitutes the core of the proposed procedure for find-

ing γopt using (17) and (5).

4.1. Finding ηopt/γopt

Let us start with some hypothesized value for γopt that

we denote γh. Substituting in (17), we obtain the corre-

sponding value of η2opt, call it η2h. Next, substituting for

η2 = η2h in (5) or (16) and solving for γ, we obtain γ̂.

Based on Remark 1 above and the relationship between

(16) and (17), the following results can be proven:

1) γh < γopt ⇒ ηh < ηopt ⇒ γ̂ > γh.

2) γh > γopt ⇒ ηh > ηopt ⇒ γ̂ < γh.

3) γh = γopt ⇒ ηh = ηopt ⇒ γ̂ = γh.

This suggests that, starting from a certain γh, we can

alternate between (17) and (5) to refine an initial esti-

mate of the regularization parameter until convergence

is reached. Convergence is indicated by the fact that

γ̂ ≈ γh or that η̂ ≈ ηh, where η̂ is calculated from

γ̂ using (17). The stopping criterion can be derived

based on the value of η2 obtained from (17) by set-

ting γ = 0 and manipulating to obtain η20 = M
tr(Λ−2)

.

This represents the smallest η value that corresponds

to γ ∈ [0,+∞). We propose stopping the iterations

when |η̂2 − η2h| is less than a small fraction of η20 . A

good choice of the initialization point is also found to

be γh = 0. The steps of the proposed BDU-ILS esti-

mation procedure can be summarized as follows:

#1 Initialize the threshold ǫ and set γh = 0.

#2 Calculate η2h from (17).

#3 Substitute η2 = η2h in (5) and solve to obtain γ̂.
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#4 Calculate η̂2 using (17).

#5 Test for convergence:

• if |η̂2 − η2h| < ǫ, go to step #6.

• else, γh = γ̂, η2h = η̂2, go to step #3.

#6 Calculate the estimate of x using (2) for γ = γ̂.

5. NUMERICAL RESULTS

In this section, the performance of the proposed BDU-

ILS approach is evaluated via numerical simulations.

Four scenarios are considered where A ∈ R
100×100

and A ∈ R
120×100 combined with the elements of x

being independent and identically distributed (white)

and independent but not identically distributed (white

noise is modulated by an exponential function to pro-

duce a non-white signal). The elements of the matrix

A are generated from a Gaussian distribution with zero

mean and unity variance. Fig. 1 plots the normalized

MSE (NMSE) for each scenario. We use the LMMSE

and the white LMMSE (WLMMSE) estimators, which

assume known signal and noise statistics, as benchmark

methods (the LMMSE is the best linear estimator for

this problem and the WLMMSE is the best estimator

based on (2)). The WLMMSE is obtained by replacing

Cx in (12) with σ2
xI. Note that when x is white, the

LMMSE and the WLMMSE are identical. In such a

case, we include only to the LMMSE.

From Fig. 1, it can be seen that in all the four

scenarios, the proposed BDU-ILS estimator outper-

forms the ordinary LS in most of the displayed SNR

range. In Fig. 1 (a) where x is white and the system

is square (100 × 100), the proposed estimator almost

replicates the performance of the LMMSE estimator.

The bias of the proposed BDU-ILS is not visible in the

depicted SNR range in Fig. 1 (a). When the size of

A is increased to 100 × 120, the performance of the

BDU-ILS estimator exhibits a bias in the form of clear

deviation from of the LMMSE and LS in the higher

SNR regime. Fig. 1 (c) and (d) are the counterparts

of Fig. 1 (a) and (b) for non-white x. Performance

degradation is clearly seen compared to the white sig-

nal case. However, for the most part, the performance

of the proposed BDU-ILS estimator stays close to that

of the WLMMSE estimator, emphasizing the capabil-

ity of the BDU-ILS estimator to achieve near-optimal

performance based on the regularization form (2).

6. CONCLUSIONS

We proposed the BDU-ILS estimator to solve the linear

least squares estimation problem. The estimator targets

the minimization of the MSE criterion. To do so, per-

turbation in the measurement matrix was permitted. To

find the best regularization parameter, an iterative pro-

cedure based on the BDU model was proposed. Nu-

merical results demonstrated the substantial improve-
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Fig. 1: Normalized MSE (NMSE) versus SNR: a)

white x, A ∈ R
100×100; b) white x, A ∈ R

120×100;

c) non-white x, A ∈ R
100×100; d) non-white x, A ∈

R
120×100.

ment in the mean squared error offered by the proposed

estimator. It was also shown that when the elements of

the vector being estimated are white, the BDU-ILS es-

timator converges to the LMMSE estimator.

3430



7. REFERENCES

[1] Y.C. Eldar, A Ben-Tal, and A Nemirovski, “Ro-

bust mean-squared error estimation in the pres-

ence of model uncertainties,” IEEE Transactions

on Signal Processing, vol. 53, no. 1, pp. 168–181,

Jan 2005.

[2] S. M. Kay, Fundamentals of Statistical Signal

Processing, Printice Hall, 1993.

[3] A. E. Hoerl and R.W. Kennard, “Ridge regres-

sion: Biased estimation for nonorthogonal prob-

lem,” Technometrics, vol. 12, pp. 55–67, Feb

1970.

[4] L. S. Mayer and T. A. Willke, “On biased esti-

mation in linear models,” Technometrics, vol. 15,

pp. 497–508, Aug 1973.

[5] Y.C. Eldar and A.V. Oppenheim, “Covariance

shaping least-squares estimation,” IEEE Trans-

actions on Signal Processing, vol. 51, no. 3, pp.

686–697, Mar 2003.

[6] Y.C. Eldar, “Improvement of least-squares un-

der arbitrary weighted mse,” in IEEE Interna-

tional Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP2007), April 2007, vol. 3,

pp. III–837–III–840.

[7] W. Gander, “Least squares with a quadratic con-

straint,” Numerische Mathematik, vol. 36, pp.

291–307, 1981.

[8] S. Chandrasekaran, G. Golub, M. Gu, and A. H.

Sayed, “Parameter estimation in the presence of

bounded data uncertainties,” SIAM Journal on

Matrix Analysis and Applications, pp. 235–252,

1998.

[9] Johanna Vartiainen, Harri Saarnisaari, Janne J.

Lehtomaki, and Markku Juntti, “A blind signal

localization and snr estimation method,” in Pro-

ceedings of the 2006 IEEE Conference on Mil-

itary Communications, 2006, MILCOM’06, pp.

3317–3323.

[10] Hong Shu Liao, Lu Gan, and Ping Wei, “A blind

snr estimation method for radar signals,” in 2009

IET International Radar Conference, April 2009,

pp. 1–4.

3431


