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ABSTRACT

Solving a linear inverse problem may include difficulties such as
the presence of outliers and a mixing matrix with a large condition
number. In such cases a regularized robust estimator is needed. We
propose a new τ -type regularized robust estimator that is simultane-
ously highly robust against outliers, highly efficient in the presence
of purely Gaussian noise, and also stable when the mixing matrix
has a large condition number. We also propose an algorithm to com-
pute the estimates, based on a regularized iterative reweighted least
squares algorithm. A basic and a fast version of the algorithm are
given. Finally, we test the performance of the proposed approach
using numerical experiments and compare it with other estimators.
Our estimator provides superior robustness, even up to 40% of out-
liers, while at the same time performing quite close to the optimal
maximum likelihood estimator in the outlier-free case.

1. INTRODUCTION

Let a linear inverse problem be given by

y = Ax+ n. (1)

The unknown source signal x ∈ Rn×1 is to be estimated. The mea-
surement vector y ∈ Rm×1 and the mixing matrix A ∈ Rm×n are
known. Finally, the noise n ∈ Rn×1 is in general unknown. This
type of problem appears frequently in signal processing [1], as well
as in physics, geosciences [2, 3], finance, and engineering in general.

Traditionally, n is assumed to have independent and identically
distributed (iid) Gaussian random entries. Under this assumption,
the optimal estimator is the least squares (LS) estimator [4]:

x̂ = argmin
x

‖y −Ax‖22. (2)

However, in many modern engineering problems this idealistic
noise model does not hold. The distribution of n is far from Gaussian
when it contains outliers, which causes the distribution to be heavy
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tailed [5]. In such scenarios, the LS-estimator’s performance dras-
tically degrades. As a solution, many statistically robust estimators
have been proposed in the literature. The first systematic approach to
statistically robust estimation is M-estimation [6], which generalizes
maximum likelihood (ML) estimation. However M-estimators are
non-robust, i.e., have a breakdown point (BP) equal to zero, when
leverage points are present (errors in the entries of A). The BP is the
proportion of outliers in the data that an estimator can handle before
giving an uninformative (e.g. arbitrarily large) result.

A second fundamental class of robust estimators are the ones
that are based on the minimization of a robust residual scale. This
class includes estimators such as the least-trimmed-squares (LTS)
[7], the least-median-of-squares (LMS) [7], and the S-estimators [8].
The latter minimizes the M-estimate of scale of the residuals. S-
estimators can be highly robust, i.e., have a high BP. However, in
this case, they do not have high efficiency, i.e., the variance of the
S-estimator, when it is tuned for high robustness, is much larger than
for the ML-estimator. This led to the development of a third class
of robust estimators, which are simultaneously robust and efficient.
The τ -estimator [9] belongs to this class.

Another common difficulty is A having a large condition num-
ber. In such cases, the LS solution x̂ in (2) does not depend con-
tinuously on the problem data y and A, i.e., it is unstable. Such
inverse problems are said to be ill-posed. To stabilize x̂, it is possi-
ble to introduce additional a priori information in the problem. This
is referred to as regularization. Tikhonov regularization is one of the
oldest and most well-known techniques for dealing with ill-posed
inverse problems [10]:

x̂ = argmin
x

‖y −Ax‖22 + λ‖x‖22. (3)

Moreover, some inverse problems suffer from both outliers and
a matrix A with a large condition number [11]. In these cases, a
regularized robust estimator is needed.

Recently, there has been increased interest in regularized esti-
mators in the robust statistics community. In particular, regularized
M-estimators [12], S-estimators [13], and MM-estimators [14] were
proposed. Of these, only the MM-estimator is simultaneously effi-
cient and robust against leverage points [5].

We propose a regularized estimator of the τ -type, which is si-
multaneously highly robust, efficient, and stable when A has a large
condition number. An advantage of our proposed estimator over the
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regularized MM-estimator is that it provides a high BP and a highly
efficient estimate of the scale of the errors, in addition to the reg-
ularized estimate x̂. We also derive an algorithm to compute the
estimates, which formulates the τ -minimization problem as a regu-
larized iterative reweighted least squares (IRLS) problem of a non-
convex function. A fast version of the algorithm is provided, which
is highly practical. Simulation studies are also conducted to com-
pare our estimator to the regularized LS-estimator and M-estimator
in terms of solving an outlier-contaminated inverse problem, where
the matrix A has a high condition number. A brief discussion about
how the regularization affects the robustness of the estimators is pro-
vided by running the same experiment, but using a matrix A with a
low condition number.

This paper is organized as follows. Section 2 introduces the
proposed regularized τ -estimator. Section 3 contains the derivation
of an algorithm to solve the τ -minimization problem as a regularized
IRLS problem of a non-convex function in a computationally fea-
sible way. Section 4, provides a Monte-Carlo simulation study that
compares the proposed approach to the regularized LS-estimator and
M-estimator in terms of the norm of the error. Section 5 concludes
the paper and provides a brief outlook on future research.

2. THE REGULARIZED τ -ESTIMATOR

The τ -scale of the residuals στ (r(x)) [9] is defined by

σ2
τ (r(x)) = σ2

M (r(x))
1

m

m∑
i=1

ρ2

(
ri(x)

σM (r(x))

)
. (4)

Here, σM (r(x)) is the robust M-scale estimate, given by

1

m

m∑
i=1

ρ1

(
ri(x)

σM (r(x))

)
= b, (5)

with b = EF [ρ1(r(x))], EF [·] denoting the expectation w.r.t. the
standard Gaussian distribution F , and ri = yi − Ax, for i ∈
{1 · · ·m}.

The choice of ρ2, controls the efficiency of the τ -estimator, e.g.,
full efficiency for the Gaussian distribution can be obtained by set-
ting ρ2(r) = r2, which corresponds to the ML-estimator under the
Gaussian assumption. The BP of the τ -estimator, on the other hand,
is controlled by ρ1 and is the same as that of an S-estimator [8] that
uses ρ1. In this way, one can obtain BP=0.5 simultaneously with
high efficiency [9].

In this paper, we introduce the regularized τ -estimator of re-
gression as the minimizer of the sum of the τ -estimate of scale of
the residuals and the Tikhonov regularization:

x̂ =argmin
x

τ2R(r(x)), (6)

where τ2R(r(x)) = σ2
τ (r(x)) + λ‖x‖22 and λ ≥ 0 is the regulariza-

tion parameter.

3. COMPUTING THE ESTIMATES

A major challenge of the regularized τ -estimator is its computation.
We note that (6) is a non-convex function, so finding the exact global
minimum may be computationally prohibitive.

Thus, to minimize (6), we propose a modification of the heuris-
tic algorithm given in [15]. The main idea behind this heuristic al-
gorithm is intuitively summarized as follows: find several local min-
ima, and select the best one among them as the final solution. There
is, of course, no guarantee that this solution is the global minimum
of (6).

3.1. Finding local minima

The parameter values x̂ that locally minimize τ2R(r(x)) are the ones
with a derivative w.r.t. x being equal to zero.

Defining

r̃(x) :=
r(x)

σM (r(x))
(7)

ψj(x) :=
∂ρj(x)

∂x
, (8)

yields

∂τ2R(r(x))

∂x
= 2σM (r(x))

∂σM (r(x))

∂x

1

m

m∑
i=1

ρ2(r̃i(x))+

+ σ2
M (r(x))

1

m

m∑
i=1

ψ2(r̃i(x))

[
−AiσM (r(x))− ri(x) ∂σM (r)

∂x

σ2
M (r(x))

]

+ λ

m∑
i=1

2xi = 0. (9)

To find ∂σM (r)
∂x

, we take the derivative of (5) w.r.t. x:

∂σM (r(x))

∂x
= −σM (r(x))

∑m
i=1 ψ1(r̃i(x))Ai∑m
i=1 ψ1(r̃i(x))ri(x)

(10)

Replacing (10) in (9) we obtain(
m∑
i=1

Wm(x)ψ1(r̃i(x))− ψ2(r̃i(x))

)
σM (r(x))Ai

m
+

+ λ

m∑
i=1

2xi = 0, (11)

where

Wm(x) :=

∑m
i=1−2ρ2(r̃i(x)) +

∑m
i=1 ψ2(r̃i(x))r̃i(x)∑m

i=1 ψ1(r̃i(x))r̃i(x)
. (12)

We can see that (11) is also ∂f(x)
∂x

where f(x) is the regularized
weighted least squares estimator

f(x) =

m∑
i=1

wi(x)(yi −Aix)
2 +

n∑
i=1

λx2i (13)

with weights

wi(x) =
ψτ (x)

2r̃i(x)
, (14)

where

ψτ (x) = −
1

m

(
m∑
i=1

Wm(x)ψ1(r̃i(x))− ψ2(r̃i(x))

)
. (15)
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So f(x) is just another way of writing (6). Hence, f(x) can
be minimized iteratively as a regularized IRLS [16] problem with
weights given by (14). The regularized IRLS algorithm for our prob-
lem is detailed in Algorithm 1. As f(x) is a non-convex function,
the result of this minimisation depends on the initial condition x[0]
given to the IRLS.

Algorithm 1 Regularized IRLS

INPUT: y ∈ Rm, A ∈ Rm×n, λ, ε, x[0], K
OUTPUT: x̂
require λ ≥ 0, ε ≥ 0, K ≥ 0
for k = 0 to K − 1 do

r[k]← y −Ax[k]
Compute σM [k]
Compute W[k]
x[k + 1]← (A>W>[k]W[k]A+ λ2)−1A>W>[k]W[k]y
if ||x[k + 1]− x[k]|| < ε then

break
end if

end for
return x̂← x[k + 1]

From 11, we deduce that the regularized tau-estimator is asymp-
totically equivalent to a regularized M-estimator with data-adaptive
psi-function.

Then the basic algorithm is shown below as Algorithm 2.

Algorithm 2 Basic algorithm

INPUT: y ∈ Rm, A ∈ Rm×n, λ, ε, K, Q
OUTPUT: x̂
require λ ≥ 0, ε ≥ 0, K ≥ 0, Q ≥ 0
for q = 0 to Q− 1 do

xq[0]←random initial condition
x̂q ←Algorithm 1 (y,A, λ, ε,xq[0],K)

end for
return x̂← argmin

x̂q

τ2R(r(x̂q))

Naturally, the value of K must be large enough to ensure suffi-
cient convergence of the solutions, typically on the order of hundreds
of iterations. Hence, Algorithm 2 may require large run times, espe-
cially when high numbers of candidate solutions, Q, are considered.

3.2. Fast algorithm

To reduce the computational cost of the basic version of the algo-
rithm, we adopt the idea proposed in [15]. It is a two-step algorithm,
as shown below.

Algorithm 3 Fast algorithm

INPUT: y ∈ Rm, A ∈ Rm×n, λ, ε, K, Q,M
OUTPUT: x̂
require λ ≥ 0, ε ≥ 0, K ≥ 0, Q ≥ 0, M ≥ 0
for q = 0 to Q− 1 do

xq[0]←random initial condition
x̂q ←Algorithm 1 (y,A, λ, ε,xq[0],K)

end for
Z ←set of M best solutions x̂q
for z ∈ Z do

x̂z ←Algorithm 1 (y,A, λ, ε,xz,∞)
end for
return x̂← argmin

x̂z

τ2R(r(x̂z))

In the first step, a very small K is chosen, in the order of 3 to
5. Hence, this step, though identical to the basic algorithm, takes
much less time. After the first step, instead of choosing just one best
solution, as in Algorithm 2, the M best solutions are kept as input
to the second step. Note that in the second step, all the M solutions
are forced to run to complete convergence by settingK ←∞. From
theseM converged solutions, the best solution is selected as the final
output.

4. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the regularized τ -
estimator with that of the regularized LS-estimator and the regular-
ized M-estimator. The simulation setup is as follows: we generate a
matrix A ∈ R300×120 with random iid Gaussian entries and a condi-
tion number of 1000. We use the same piece-wise constant x for all
the experiments. Additive outliers and Gaussian noise are included
in generating y:

y = Ax+ nG + no, (16)

where nG ∈ R300×1 has random iid Gaussian entries. On the other
hand, no ∈ R300×1 is a sparse vector. The few non-zero randomly
selected entries have a random uniform value with zero mean and
variance equal to 10 times that of Ax. These entries represent the
outliers.

With y and A as input, x̂ is estimated with the three different es-
timators. To show the efficiency and robustness of the estimators in
terms of the norm of the error ‖e‖ = ‖x̂− x‖, several experiments
with different percentages of outliers (0%, 10%, 20%, 30%, 40%)
are carried out.

For the loss function ρ(t) of the M-estimator, we choose the Hu-
ber function [17], while for the τ -estimator we choose the so-called
optimal weight function with clipping parameters c1 = 0.4046 and
c2 = 1.0900. They are plotted in Figure 1. These loss functions
produce a τ -estimator with BP = 0.5 and efficiency of 95% [15].

In each realization, the optimal λ was found experimentally and
used in the experiment. Figure 2 shows the average of the ‖e‖ eval-
uated over 100 Monte-Carlo runs.

We can observe in Figure 2 that the ‖e‖ of the regularized LS-
estimator and regularized M-estimator strongly increase already for
10% of outliers. The regularized τ -estimator, on the other hand,
provides superior robustness, even up to 40% of outliers. The LS-
estimator, which coincides with the ML-estimator, provides the best
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Fig. 1. ’Optimal weight’ [15] loss functions ρ1(t) (solid line) and
ρ2(t) (dashed line) used in the regularized-τ estimator.
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Fig. 2. Average of the ‖x̂ − x‖ produced by the regularized LS-
estimator, M-estimator, and τ -estimator evaluated over 100 Monte-
Carlo runs.

performance in the outlier-free case. The τ -estimator has a high
relative efficiency, producing estimates which are quite close to the
LS-estimates.

In order to demonstrate how the regularization affects the ro-
bustness of the estimators, we run the same experiment, but using a
matrix A with a low condition number of the order of 10. Then, x is
estimated using the non-regularized LS-estimator, M-estimator, and
τ -estimator, respectively. Results are shown in Figure 3.

First, we note that the errors in the non-regularized case are, in
general, one order of magnitude larger than in the regularized case.
This is due to the regularization limiting the maximum error: we
chose the optimum regularization parameter. The maximum error is
thus obtained when the parameter is large enough to make x̂ = 0.

Thus, the maximum ‖e‖ = ‖x‖ = 3.6 for the particular source
x we chose. This intuitively represents the BP of the regularized
estimator.

In the regularized case, the LS saturates to this maximum ‖e‖,
while the M-estimator remains under this bound. Its performance
is much better than in the non-regularized case. The τ -estimator
performs well up to 40% of outliers in the regularized case, but in
the non-regularized case it is not robust for 40% of outliers.

From these results, we can conclude that the regularization im-
proves the robustness of the estimation. It includes in the problem
more a priori information about the solution, which permits the es-
timator to compute a solution closer to the real one, and to discard
unlikely solutions which cause a breakdown.

0 10 20 30 40

20

40

60

80

% outliers

 LS

 M

 tau

Fig. 3. Average of the ‖x̂−x‖ produced by the non-regularized LS-
estimator, M-estimator, and τ -estimator evaluated over 200 Monte-
Carlo runs.

5. CONCLUSIONS

In this paper, we proposed a new regularized robust estimator that is
simultaneously highly robust against outliers, highly efficient in the
presence of purely Gaussian noise, and also stable when the mixing
matrix has a large condition number. A large part of this paper was
dedicated to deriving a fast way of computing this estimator based
on a regularized iterative reweighted least squares algorithm. We
showed that our estimator provides superior robustness, compared to
existing regularized estimators, and approximately maintains a per-
formance quite close to the optimal maximum likelihood estimator
in the outlier-free case, even up to 40% of outliers. The proposed
estimator seems well suited to solve inverse transport modelling of
atmospheric emissions, where the mixing matrix may also contain
outliers. This real data application will be part of our future work.
Furthermore, fundamental robustness concepts, such as the break-
down point, the maximum bias curve and the influence function are
influenced by the regularization. We showed via numerical exper-
iments that a breakdown occurs when the norm of the errors con-
verges to a fixed value that depends on the regularization. A full
statistical robustness analysis of the proposed estimator will provide
new insights on the interrelation of robustness and regularization.
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