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ABSTRACT

Building on recent results in the random matrix analysis of ro-
bust estimators of scatter, we show that a certain class of such
estimators obtained from samples containing outliers behaves
similar to a well-known random matrix model in the limit-
ing regime where both the population and sample sizes grow
to infinity at the same speed. This result allows us to under-
stand the structure of such estimators when a certain fraction
of the samples is corrupted by outliers and, in particular, to
derive their asymptotic eigenvalue distributions. This analy-
sis is a first step towards an improved usage of robust estima-
tion methods under the presence of outliers when the number
of independent observations is not too large compared to the
size of the population.

Index Terms— Robust estimation, outliers, random ma-
trix theory.

1. INTRODUCTION

The growing momentum of big data applications along with
the recent advances in large random matrix theory have raised
a great interest for problems in statistical inference and sig-
nal processing under the assumption of similar population and
sample sizes. New source detection schemes have in particu-
lar been proposed (see, e.g., [1, 2]) based on the works on the
extreme and isolated eigenvalues of large sample covariance
matrices. New subspace methods in large array processing
have also been derived that outperform traditional algorithms
by exploiting statistical inference methods on large random
matrices (see, e.g., [3]). Most of these signal processing meth-
ods fundamentally rely on the structure of the sample covari-
ance matrix (SCM) 1

n

∑n
i=1 yiy

†
i formed from independent

or linearly dependent samples y1, . . . ,yn ∈ CN , which are
by now well understood objects. However, there are applica-
tions where, even when n � N , the SCM fails to provide a
good estimate of the population covariance, hence the need
for more robust methods. Robust scatter M-estimation tech-
niques are precisely used to better approximate population co-
variance (or scatter) matrices whenever (i) the distribution of
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the yi’s is heavier-tailed than Gaussian (e.g., elliptical data)
or (ii) the yi’s contain outliers [4, 5].

Given the usually quite involved implicit expression of
these robust estimators, it is not obvious to study their be-
havior but recent works have provided some first answers for
Gaussian or elliptical i.i.d. data, see e.g., [6] for Maronna’s
M-estimator, [7] for Tyler’s estimator, or [8] for a regularized
adaptation of Tyler’s estimator. Robust regressors have also
been investigated in [9]. These works entailed the design of
improved detectors and estimators accounting for the impul-
siveness of data, see e.g., [10] for an application to portfolio
optimization in finance, [11] for subspace estimators in array
processing, or [12] for generalized likelihood ratio tests under
elliptical noise data.

Implicit to all of these works is the assumption of an
outlier-free model, in which samples are drawn i.i.d. from an
analytically-tractable distribution (i.e., Gaussian or elliptical
typically). Thus, very little is known concerning the impact
of outliers on the robust estimators, despite the fact that these
estimators were originally designed by Huber [4] for the very
purpose of mitigating outliers. In this work, we consider
robust scatter estimators of the Maronna type (defined be-
low) in the double asymptotic regime where N,n→∞ with
N/n → c ∈ (0, 1), and characterize their behavior when the
set of data samples contains deterministic or random outliers.
Our main finding is to show that, under mild assumptions,
the estimator behaves for large N,n as a weighted version of
the SCM with different weights for the model-fitting samples
(usually considered in majority) and for the outlying samples.
An analysis of these weights in the limiting case of few out-
liers reveals the following messages: (i) the robust estimators
tend to reduce the importance of outliers with strong norm,
thus precluding the problem of arbitrary large bias, and (ii-a)
strong correlation in the model-fitting data induces in general
stronger outlier rejection but (ii-b) in a worst case scenario,
the impact of outliers may be amplified, thus necessitating a
careful choice of estimators within the Maronna class, and in
particular estimators originally proposed by Huber.

2. PROBLEM STATEMENT

Consider Y ∈ CN×n to be a matrix composed in columns
of n stacked N -dimensional data vectors, with εnn of these
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samples being outliers and assume, without loss of generality,
that the columns of Y are reordered as

Y =
[
y1, . . . ,y(1−εn)n,a1, . . . .aεnn

]
(1)

Here y1, . . . ,y(1−εn)n ∈ CN are random model-fitting sam-
ples with yi = C

1/2
N xi, where CN ∈ CN×N is deterministic

and x1, . . . ,x(1−εn)n are i.i.d. random with i.i.d. zero mean
and unit variance entries,1 whereas a1, . . . ,aεnn ∈ CN are
arbitrary outlying samples. We further denote cn , N/n and
shall consider the following growth regime.

Assumption 1 As N,n → ∞, cn → c and εn → ε ∈ [0, 1)
with 0 < c < 1− ε.

Assumption 2 For each N , CN � 0, lim supN ‖CN‖ <∞
and 0 < mini lim infN ‖ai‖ ≤ maxi lim supN ‖ai‖ <∞ .

Define Maronna’s M -estimator ĈN as the (almost surely
unique) solution to the equation in Z [13]

Z =
1

n

(1−εn)n∑
i=1

u

(
1

N
y†iZ

−1yi

)
yiy
†
i

+
1

n

εnn∑
i=1

u

(
1

N
a†iZ

−1ai

)
aia
†
i (2)

where u is defined on [0,∞), nonnegative, continuous and
non-increasing, and such that φ(x) = xu(x) is increasing
and bounded with limx→∞ φ(x) , φ∞, and 1 < φ∞ < c−1.

Following the works [6, 14], our main objective is to find
a large N,n random matrix equivalent for ĈN which is more
tractable and prone to analysis.

3. MAIN RESULTS

We are now in position to introduce our main result, a proof
sketch of which is provided in Appendix A. A complete proof
will be provided in an extended version of the present article.

Theorem 1 (Asymptotic Behavior) Let Assumptions 1-2
hold and let ĈN be the a.s. unique solution to (2). Then, as
N,n→∞, ∥∥∥ĈN − ŜN

∥∥∥ a.s.−−→ 0 (3)

where

ŜN ,
1

n

(1−εn)n∑
i=1

v (γn)yiy
†
i +

1

n

εnn∑
i=1

v (αi,n)aia
†
i (4)

1We could have considered samples with elliptical-like distributions in-
stead but, in order not to confuse messages, we only characterize here the
behavior of Maronna’s estimator for light-tailed data versus outliers.

with γn and α1,n, . . . , αεnn,n the unique positive solutions to
the system of εnn+ 1 equations (i = 1, . . . , εnn)

γn =
1

N
trCN

 (1− ε)v(γn)

1 + cv(γn)γn
CN +

1

n

εnn∑
j=1

v (αj,n)aja
†
j

−1

αi,n =
1

N
a†i

 (1− ε)v(γn)

1 + cv(γn)γn
CN +

1

n

εnn∑
j 6=i

v (αj,n)aja
†
j

−1ai
(5)

and v(x) a non-increasing function with v(0) = u(0) and
limx→∞ v(x) = 0, defined precisely by v(x) = u

(
g−1(x)

)
,

g(x) = x/(1− cφ(x)).

This result characterizes the spectral behavior of ĈN for
large N,n. In particular, a corollary to Theorem 1 is that
maxi |λi(ĈN )−λi(ŜN )| a.s.−−→ 0, where λi(X) are the ordered
eigenvalues of the Hermitian matrix X.

Observe that the approximation matrix ŜN consists of two
terms: a normalized SCM and a weighted sum of the outlier
outer products. These weights allow for an automated bal-
ancing between model-fitting data and outliers. To get some
insight on the properties of ĈN induced by these weights, let
us consider the single-outlier case where εn = 1/n → 0.
Regarding the model-data weights, we obtain by a rank-one
perturbation argument that γn → γ, where γ is the solution to
γ = (1 + cv(γ)γ)/v(γ). Moreover, using the definition of v,
it can be seen that γ = φ−1(1)/(1 − c), the result originally
proved in [14] in the absence of outliers. As for the outlier’s
weight, we have |α1,n − ᾱ1,n| → 0 with

ᾱ1,n =
φ−1(1)

1− c
1

N
a†1C

−1
N a1.

Hence, provided that lim infn
1
N a†1C

−1
N a1 > 1, v(α1,n) ≤

v(γ) for all large n, and thus a larger value of 1
N a†1C

−1
N a1

will generally lead to a larger attenuation of the outlier a1.
However, if lim supn

1
N a†1C

−1
N a1 < 1, then the opposite oc-

curs and, in fact, the effect of the outlier may be amplified.
As such:

• to avoid boosting the effect of outliers, v(x) should be
set to a constant for all x ≤ φ−1(1)

1−c , or equivalently
u(x) is constant for x ≤ φ−1(1). A particular example
of such a choice is u(x) = min{1, (1 + t)/(t + x)}
for some t > 0, which is (almost) the original Huber
estimator from [4].2

• for CN close to the identity matrix, only the norm of
a1 dictates its relative impact. Departing from the iden-
tity, a good rejection to outliers is expected if a1 is not

2Huber considered a t = 0 and a slightly more general form, but t = 0 is
usually not enough to ensure uniqueness of the solution to (2).
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aligned to the dominant eigenvectors of CN (i.e., to the
least dominant eigenvectors of C−1N ). Contrarily, if a1
were aligned to a dominant eigenvector of CN , outlier
rejection would be compromised.

Returning to the multi-outlier case, other considerations
can be made. If a1 = . . . = aεnn, we can see (through
similar arguments as above) that, as εnn grows, the outlier-
rejection gain brought by the (possibly large) quadratic
form 1

N a†1C
−1
N a1 is quickly overrun so that, if ε > 0 and

lim supN
1
N a†1C

−1
N a1 < ∞, α1,n → 0 as n → ∞ and the

outliers are not rejected but boosted instead.
Of interest also is the case where the ai’s are random i.i.d.,

not following the same distribution as yi. This gives in par-
ticular the following corollary.

Corollary 1 (Random Outliers) Let Assumptions 1-2 hold
and let a1, . . . ,aεnn be random with ai = D

1/2
N x̂i, where

DN ∈ CN×N is deterministic and x̂1, . . . , x̂εnn are i.i.d.
random with i.i.d. zero mean and unit variance entries.
Let us further assume that, for each N , DN � 0 and
lim supN ‖DN‖ <∞. Then, as N,n→∞,∥∥∥ĈN − Ŝrnd

N

∥∥∥ a.s.−−→ 0 (6)

where

Ŝrnd
N ,

1

n

(1−εn)n∑
i=1

v (γ̃n)yiy
†
i +

1

n

εnn∑
i=1

v (α̃n)aia
†
i , (7)

with γ̃n and α̃n the unique positive solutions to

γ̃n =
1

N
trCN

(
(1− ε)v(γ̃n)

1 + cv(γ̃n)γ̃n
CN +

εv(α̃n)

1 + cv(α̃n)α̃n
DN

)−1
α̃n =

1

N
trDN

(
(1− ε)v(γ̃n)

1 + cv(γ̃n)γ̃n
CN +

εv(α̃n)

1 + cv(α̃n)α̃n
DN

)−1
.

In this scenario, ĈN is equivalent to a weighted sum of
two sample covariance matrices, one for the model-fitting
data and the other for the outlier data. Again, it is interesting
to study the regime where ε = 0. In this regime, we get that
γ̃n = γ given as above, i.e., γ = φ−1(1)/(1− c), and

α̃n =
φ−1(1)

1− c
1

N
trDNC−1N , ᾱn.

The factor of importance is now the trace 1
N trDNC−1N . Sim-

ilar to before, the larger this value, the stronger the rejection
of the outlier samples; whilst if this value becomes small, the
outliers may indeed be amplified. Note that, for DN and CN

of similar trace, it is of key importance that CN be as dis-
tinct from IN as possible for outlier rejection to be possible.
In addition, when seen as functions of ε, γ̃n(ε) → γ and
α̃n(ε) → ᾱn continuously with ε → 0, so that the predicted
behavior for ε = 0 is a good approximation of the behavior
for all small ε > 0.

4. NUMERICAL DISCUSSION

We now provide simulation results that shed further light on
the conclusions drawn from Theorem 1 and Corollary 1.

Let us place ourselves first under the setting of Theorem 1.
Taking N = 100, n = 500, we assume [CN ]ij = .9|i−j| and
let εnn = 2 with a1 = 1, the vector of all-ones, and a2 a
steering vector at 30◦, i.e., [a2]k = exp(πık), ı =

√
−1. In

this setting, 1
N a†1C

−1
N a1 ' 0.06 while 1

N a†2C
−1
N a2 ' 19.

We compare the results obtained for u1(x) = (1 + t)/(t+ x)
against u2(x) = min{1, (1 + t)/(t+ x)} for t = .1 (labeling
v1, v2 accordingly).

Numerically, we obtain

v1(γn) ' .992, v1(α1,n) ' 6.42, v1(α2,n) ' .006,

indicating strong attenuation of the second outlier, while
strong enhancement of the first. Comparatively,

v2(γn) ' .984, v2(α1,n) = 1.00, v2(α2,n) ' .006.

Thus Huber’s type estimator u2 prevents, as it should, the out-
lier a1 to be enhanced. This however induces a slight loss in
the closeness of v2(γn) to one.

We now place ourselves under the setting of Corollary 1
with [CN ]ij = .9|i−j|, N = 100, c = .2, while DN = IN ,
ε = 0.05, i.e., a 5% data pollution by outliers, and u(x) =
u2(x). We wish to compare the eigenvalue distribution of
the SCM 1

nYY† and that of ĈN with the outlier-free SCM
1
n

∑(1−εn)n
i=1 yiy

†
i in order to see the robustness of SCM and

ĈN against outliers. To avoid lengthy and imprecise Monte
Carlo simulations, we instead compare the theoretical limit-
ing eigenvalue distributions3 as N,n → ∞ but for the lim-
iting eigenvalue distribution of CN maintained to that with
N = 100; thus, we precisely compare the eigenvalue den-
sities of the so-called deterministic equivalents for the vari-
ous random matrices under study. This is depicted in Fig. 1,
which shows a tight match between ĈN and the target dis-
tribution (i.e., the outlier-free SCM). The SCM, on the other
hand, is strongly distorted as a consequence of the outliers.

5. CONCLUSION

We have provided a first large dimensional characterization
for robust covariance estimators of the Maronna-type when
the data set contains outliers. We specifically showed that,
under mild assumptions, the Maronna estimator behaves as
a weighted version of the sample covariance matrix, where
model-fitting data versus outliers are weighted differently.
Our analysis paves the way to an improved usage of robust
estimators of scatter in application contexts prone to outliers.
As an important outcome, we have found that M-estimators
of the Huber form are preferable to estimators of the Tyler
form, as these are far from optimally robust against outliers.

3The limiting eigenvalue density is obtained from the inverse Stieltjes
transform formula for the model under study; see e.g., [15].
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Fig. 1. Limiting eigenvalue distributions. [CN ]ij = .9|i−j|,
DN = IN , ε = .05.

A. INTUITIVE DERIVATION OF THE RESULTS

Both intuitive and accurate proofs follow the ideas of [6], with
appropriate modifications. We provide here only the non-
rigorous (although more insightful) sketch of the proof.

We start from the solution to (2), ĈN , and define ĈN =

C
−1/2
N ĈNC

−1/2
N , which allows us to write

ĈN =
1

n

(1−εn)n∑
i=1

u

(
1

N
x†i Ĉ

−1
N xi

)
xix
†
i

+
1

n

εnn∑
i=1

u

(
1

N
ã†i Ĉ

−1
N ãi

)
ãiã
†
i (8)

where ãi = C
−1/2
N ai. The intuitive idea is to approximate

the quadratic forms 1
N x†i Ĉ

−1
N xi and 1

N ã†i Ĉ
−1
N ãi by some de-

terministic quantities making use of standard random matrix
results. To that end, the main difficulty lies in the dependence
structure between ĈN and the vectors xi. Following the same
steps as in [16, III.A], this dependence can be ‘weakened’ by
rewriting (8) as

ĈN =
1

n

(1−εn)n∑
i=1

v (di)xix
†
i +

1

n

εnn∑
i=1

v (bi) ãiã
†
i (9)

with d1, . . . , d(1−εn)n and b1, . . . , bεnn the unique solutions
to the n equations

di =
1

N
x†i Ĉ

−1
(xi)

xi, i = 1, . . . , (1− εn)n

bi =
1

N
ã†i Ĉ

−1
(ai)

ãi, i = 1, . . . , εnn, (10)

where Ĉ(xi) and Ĉ(ai) are built from ĈN by removing the
outer product involving xi and ai, respectively. Note that

Ĉ(xi) and xi are not completely independent since Ĉ
−1
N (in

the argument of the u function for all samples) is built on
xi. This dependence, however, seems to be ‘weak’ since
xi is only one among a growing number n of xj vectors.
Approximating this ‘weak’ dependence by independence, we
can use trace and rank-one perturbation arguments (see, e.g.
[17, Lemma 3.1]) which suggest that

di =
1

N
x†i Ĉ

−1
(xi)

xi ≈
1

N
tr Ĉ

−1
N , d. (11)

From known large random matrix results (see, e.g., [18,
19]), we also expect d and bi to have deterministic equiva-
lents. Assume this is true, i.e., there exist deterministic se-
quences {γn}∞n=1 and {αi,n}∞n=1 such that

|d− γn|
a.s.−−→ 0 (12)

|bi − αi,n|
a.s.−−→ 0, i = 1, . . . , εnn. (13)

We can then approximate

ĈN ≈
1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i (14)

and, consequently,

d ≈ 1

N
tr

 1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i

−1
(15)

bi ≈
1

N
ã†i

 1

n

(1−εn)n∑
j=1

v (γn)xjx
†
j +

1

n

εnn∑
j 6=i

v (αj,n) ãj ã
†
j

−1ãi,
(16)

with v(γn) now independent of xi, and recall that ãi’s are de-
terministic. Then, (15) and (16) are functionals of a general
class of random matrices whose deterministic equivalents are
known (see, e.g., [18, 19]). From a direct application of [18,
Thm. 1], we would then expect γn and αi,n, i = 1, . . . , εnn,
to be given by (5), the system of fixed-point equations in The-
orem 1. In fact, we can prove rigorously that such γn and αi,n
are well-defined and satisfy max1≤i≤(1−εn)n |di − γn|

a.s.−−→ 0

and max1≤i≤εnn |bi − αi,n|
a.s.−−→ 0. This uniform conver-

gence ensures that
∥∥∥ĈN − ŜN

∥∥∥ a.s.−−→ 0 where

ŜN =
1

n

(1−εn)n∑
i=1

v (γn)xix
†
i +

1

n

εnn∑
i=1

v (αi,n) ãiã
†
i . (17)

It is then immediate to see under Assumption 2 that this, along
with ĈN = C

1/2
N ĈNC

1/2
N , yields the result in Theorem 1.

For the case of random outliers, the result in Corollary 1
can be derived from Theorem 1 by using the same random
matrix arguments, i.e., trace and rank-one perturbation argu-
ments along with the deterministic equivalent from [18, Thm.
1], but now focused on the random outlying vectors ai.
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