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ABSTRACT

This paper lies in the lineage of recent works studying the asymptotic
behaviour of robust-scatter estimators in the case where the number
of observations and the dimension of the population covariance ma-
trix grow at infinity with the same pace. In particular, we analyze the
fluctuations of bilinear forms of the robust shrinkage estimator of co-
variance matrix. We show that this result can be leveraged in order
to improve the design of robust detection methods. As an example,
we provide an improved generalized likelihood ratio based detector
which combines robustness to impulsive observations and optimality
across the shrinkage parameter, the optimality being considered for
the false alarm regulation.

1. INTRODUCTION

Estimation of covariance matrices is a fundamental problem in sta-
tistical signal processing with numerous applications, most impor-
tantly in radar detection and estimation of direction of arrivals [1].
The commonly used estimator is the well-known sample covariance
matrix (SCM) which coincides with the Maximum Likelihood es-
timator for Gaussian observations. If x1, · · · ,xn denote the zero-
mean n observations independent and identically distributed of size
N , then the sample covariance estimator is given by:

R̂ =
1

n

n∑
i=1

xix
∗
i .

where ∗ stands for the transpose conjugate operator.
The popularity of the SCM owes to its low complexity and the

existence of a good understanding of its behavior in the regimes
n → ∞ and N fixed, and also that of n,N tending to infinity with
the same pace. In particular, it is already known that in the first
regime, R̂ is a consistent estimator of the true covariance matrix of
xi. Recent advances in random matrix theory have established that
the SCM is no longer consistent whenN and n are large and compa-
rable, a regime which will be referred in the sequel to as n,N →∞.
In general, a consistent estimate of the covariance matrix does not
exist, except probably for special cases where an a priori structure of
the covariance matrix is assumed. Hopefully, in practice, the object
of interest is often not the covariance matrix of the observations but
rather some scalar functional of it. The use of recent results from ran-
dom matrix theory have allowed to devise consistent estimation tech-
niques of these functionals in the regime n,N →∞. A wide range
of applications have been considered ranging from source detection
[2, 3] and subspace estimation methods in array processing [4] to
performance metrics estimation in wireless communications [5, 6].
A common denominator of these methods is that they still funda-
mentally rely on the SCM, their consistency being obtained through
a deep analysis of its asymptotic behaviour. Nevertheless, the use

of SCM can be inadequate if some atypical observations exhibit an
impulsive character, thereby inducing poor accuracy for finite N,n,
even though asymptotically consistent. Such observations, often re-
ferred to as outliers can represent any impulsive source of noise,
including high short-term interference in wireless networks [7] or
clutter echoes in radar applications [8]. An alternative to the con-
ventional use of SCM, which can be traced back to the early works
of Huber [9] and Maronna [10] is constituted by the class of ro-
bust scatter estimators, which are known for their resilience to the
presence of atypical observations. Among these estimators, we dis-
tinguish the Maronna’s M-estimators given as the unique solution
of:

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

where u (defined on [0,∞)) is a positive function satisfying some
appropriate conditions, and the Tyler M-estimator obtained by set-
ting u(x) = 1

x
. Despite their confirmed resilience to impulsive

noises, the performance study of robust estimation methods has es-
sentially been performed under the classical regime n → ∞ and
N fixed. It is only recently that a new wave of works has emerged
which shed light on the asymptotic behaviour of robust scatter esti-
mation methods in the regime N,n→∞ [11, 12].

In this paper, we consider the robust shrinkage estimator pro-
posed in [13] and given as the unique solution ĈN to:

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N
x∗i Ĉ

−1
N (ρ)xi

+ ρIN , (1)

where ρ ∈ (max {0, (n−N)/n} , 1]. Such estimator is built upon
the Tyler’s M-estimate and upon the Ledoit-Woft shrinkage estima-
tor [14]. It is particularly well-suited to scenarios where N > n,
for which other estimators are badly conditioned if not undefined. In
[11] , it has been shown that supρ

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0 where

ŜN (ρ) follows a classical random matrix model. The importance of
this result lies in that it allows a better understanding of the behaviour
of ĈN and more interestingly it facilitates the design of novel ro-
bust consistent estimation techniques. Such estimators are obtained
using the convergence of ĈN (ρ) to ŜN (ρ). However, in some ap-
plications, where second order statistics are demanded, an under-
standing of the rate of convergence of ĈN (ρ) to ŜN (ρ) is essential
for coming up with appropriate settings of the shrinkage parameter
ρ. Of particular interest are quadratic forms of the type a∗Ĉk

Nb
which naturally appears for k = −1 in the Generalized Likelihood
Ratio detection technique for elliptical noise environments, often
used in radar applications [8, 15]. The study of the convergence
rate of these quadratic forms is among the major contributions of
this work. Contrary to first impressions (conveyed by the fact that∣∣∣ĈN (ρ)− ŜN (ρ)

∣∣∣ seems to fluctuate at speed N−
1
2 ), we show that
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this rate is sufficient to ensure that a∗Ĉk
Nb and a∗ŜkNb exhibit the

same fluctuations. As an additional contribution, we show how this
result can be exploited for the specific problem of signal detection in
impulsive noise environments via the GLRT. In this context, we de-
termine the shrinkage parameter ρ which minimizes the probability
of false detections and provide an empirical consistent estimate of
this parameter. Finally, we conclude by providing simulation results
that support our theoretical findings.

2. MAIN RESULTS

We consider x1, · · · ,xn be n zero mean independent observations
of CN , which satisfy:

xi =
√
τiANwi (2)

where wi ∈ CN are Gaussian zero-mean random vectors with
covariance IN and τi > 0 are random or deterministic scalars.
Note that letting τi = τ̃i

‖wi‖
for some τ̃i independent of wi, vec-

tors xi (2) belongs to the class of elliptically distributed random
vectors. Denote CN = ANA∗N ∈ CN×N such that νN ,
1
N

∑N
i=1 δλi(CN ) → ν weakly, with lim sup ‖CN‖ < ∞ and

1
N

trCN = 1.
In this work, we consider the regime where N,n → ∞ and

cN , N
n
→ c ∈ (0,∞), and propose to analyze under this regime

the behaviour of the robust-scatter estimator of [13] (See eq. (1)).
The first-order asymptotic behaviour of (1) has been studied in

[11]. Before presenting our second-order result, we shall review the
main findings of [11], in order to facilitate the understanding of our
work.

2.1. First order result

The difficulty of analyzing the asymptotic behaviour of the robust-
scatter estimator lies in the rank-1 matrices involved in the sum of
(1) being dependent through ĈN (ρ). At first glance, this observation
might make us think that the asymptotic analysis of ĈN (ρ) is out of
the framework of the theory of large random matrices. However, a
careful investigation of the expression of ĈN (ρ) can lead to replace
it by a more suitable asymptotic random equivalent for which many
results from random matrix theory can easily apply. A thorough
proof of the asymptotic behaviour can be found in [11]. Hereafter,
we develop heuristics that show how one can obtain a more tractable
random equivalent of ĈN (ρ).

For that, consider Ĉ(i) the matrix obtained by removing the

outer product involving xi, i.e, Ĉ(i) = ĈN (ρ)− 1−ρ
n

xix
∗
i

1
N

x∗
i Ĉ

−1
N

(ρ)xi
.

Using the relation (B− tvv∗)−1 v = B−1v/(1 + tv∗B−1v), we
get:

z∗iC
−1
N (ρ)zi = (1− (1− ρ)cN )z∗iC

−1
(i) zi

where zi = ANwi. Hence, (1) becomes:

ĈN (ρ) =
(1− ρ)

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

1
N
z∗i Ĉ

−1
(i) zi

+ ρIN .

One can easily convince oneself that the dependence of Ĉ(i) on zi

is quite weak. As a matter of fact, Ĉ(i) depends on xi only through
ĈN in the terms u( 1

N
x∗j Ĉ

−1
N xj), j 6= i. But since xi is only one

among a growing number n of xj vectors, this dependence struc-
ture looks intuitively weak. Thus, the asymptotic limit of di(ρ) ,
1
N
z∗i Ĉ

−1
(i) zi is the same as the one of 1

N
trCNĈ−1

(i) using the trace

lemma in [16, Lemma B.26] and also that of 1
N

trCNĈ−1
N (ρ) by

rank-1 perturbation arguments. In light of this intuition, if γN (ρ)
denotes the asymptotic limits of all the dis (the limit of all the dis is
the same), then:

ĈN (ρ) ' (1− ρ)

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

γN (ρ)
+ ρIN (3)

Therefore, taking the trace of the inverse of (3) times CN ,

γN (ρ) ' 1

N
trCN

(
(1− ρ)

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

γN (ρ)
+ ρIN

)−1

(4)
The behaviour of the matrix inverse in the right-hand side of (4) is
well-studied by the theory of large random matrices. Its trace can be
handled using standard kind of calculations thereby implying, with
a slight abuse of the notations, that γN is the unique solution to:

1 =

∫
t

γN (ρ)ρ+ (1− ρ)t
νN (dt)

From this intuition, we have the following approximation matrix for
ĈN :

ŜN (ρ) =
1

γN (ρ)

1− ρ
1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i + ρIN .

We recall now the main steps of the rigorous proof of this equiva-
lence. Let fi = di(ρ)

γN (ρ)
and assume that f1 ≤ · · · ≤ fn. The work

of [11] establishes that for any ` > 0 and any sequence ρn ∈ Rκ ,[
κ+ max

(
0, 1− c−1, 1

)]
with κ > 0, f1 ≥ 1− ` and fn ≤ 1 + `.

The proof is done by contradiction. We will just provide the main
milestones for the control of fn. We start by upper-bounding dn(ρ)
by:

dn(ρ) ≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i

dn(ρ)
+ ρIN

)−1

zn

≤ dn(ρ)

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i + dn(ρ)ρIN

)−1

zn

If there exists a sequence ρn ∈ Rκ over which fn(ρn) ≥ 1 + `,
then:

1 ≤ 1

N
z∗n

(
1− ρ

1− (1− ρ)cN

1

n

n∑
i=1

ziz
∗
i + (γ(ρn) + `) ρnIN

)−1

zn

(5)
The quadratic form in the right-hand side of turns out to converge to
a limit which is strictly less than 1, thereby leading to a contradiction
with the above inequality. We then have,

sup
ρ∈Rκ

max
1≤i≤n

|di(ρ)− γN (ρ)| a.s.−→ 0,

which therefore leads to the following first-order result:

Theorem 1. Consider the regime where N,n → ∞ and cN → c.
For any κ > 0 small, define Rκ ,

[
κ+ max

(
0, 1− c−1, 1

)]
.

Then,
sup
ρ∈Rκ

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0.
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2.2. Second order result

In this section, we analyse the fluctuations of quadratic forms of the
type a∗Ĉk

Nb. From the most recent works studying the fluctuations
of random quadratic forms [17], one can intuitively state that the
convergence rate of a∗Ĉk

Nb is of order N−
1
2 . In order to transpose

the fluctuations of a∗Ĉk
Nb to that of a∗ŜkNb, we need to establish

that the difference a∗Ĉk
Nb − a∗ŜkNb converges to zero at a rate

less than N−
1
2 . A careful analysis of the above sketch of the proof

reveals that a further improvement of the first order result is possible
by considering N

1
2
−εfi for ε > 0 instead of fi. The contradiction

will still hold since the convergence speed of the quadratic form (5)
is of orderN−

1
2 . Under the same setting of Theorem 1, we therefore

have:
sup
ρ∈Rκ

N
1
2
−ε
∥∥∥ĈN (ρ)− ŜN (ρ)

∥∥∥ a.s.−→ 0, (6)

which is not sufficient in view of the above discussion. In our
opinion, the convergence speed in (6) cannot be improved to N−

1
2 .

Nonetheless, by virtue of an averaging effect, the fluctuation of spe-
cial forms of functionals ĈN (ρ) can be further improved. Although
linear functionals of the eigenvalues could have been considered,
we focus our attention in this work on bilinear forms of the type
a∗Ĉk

N (ρ)b where a and b are unit norm vectors in CN and k ∈ Z.
In particular, we prove in this work the following result:

Theorem 2. Under the setting of Theorem 1, for any ε > 0 and
every k ∈ Z:

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉk

N (ρ)b− a∗ŜkN (ρ)b
∣∣∣ a.s.−→ 0.

An immediate consequence of Theorem 2 is that fluctuations
of bilinear forms of the type a∗Ĉk

N (ρ)b are the same as those of
a∗ŜkN (ρ)b. This is because the convergence rate of the difference
a∗Ĉk

N (ρ)b − a∗ŜkN (ρ)b is less than N−
1
2 . The interest of this

finding becomes even more obvious when we notice that a∗ŜkN (ρ)b
are classical objects in random matrix theory for which an important
load of new results exist. More formally, we state the following
corollary:

Corollary 1. Assume that under the regime N,n→∞, there exists
σ2
N > 0 such that:√

N

σ2
N

(
a∗ŜkN (ρ)b− E[a∗ŜkN (ρ)b]

)
D−−−−−→

N,n→∞
N (0, 1)

Then,√
N

σ2
N

(
a∗Ĉk

N (ρ)b− E[a∗Ĉk
N (ρ)b]

)
D−−−−−→

N,n→∞
N (0, 1)

Sketch of the proof of Theorem 2. Similar to the first order results,
the main difficulty is on the control of quantities di(ρ) which are
dependent and do not admit closed-form expressions. However, the
same methodology cannot be pursued, mainly because replacing
quantities di(ρ) by γN (ρ) will not be sufficient for the second-order
result to hold, the difference γN (ρ)−di(ρ) being of orderO(N−

1
2 ).

We need thus a refined approximation of di(ρ) which has to be at
the same time tractable and closer to di(ρ) than is γN (ρ). Recall

that di(ρ) = 1
N
z∗i Ĉ

−1
(i) (ρ)zi. A natural random approximation of

di(ρ) would be obtained by substituting Ĉ−1
(i) (ρ) by Ŝ−1

(i) (ρ) with:

Ŝ(i) = ŜN −
1

γN (ρ)

1− ρ
1− (1− ρ)cN

1

n
ziz
∗
i

thereby yielding:

d̃i =
1

N
z∗i Ŝ

−1
(i) (ρ)zi.

Using a proof by contradiction similar to the one in the first order
result, we can establish that:

N1−ε sup
ρ∈Rκ

max
1≤i≤n

∣∣∣d̃i(ρ)− di(ρ)
∣∣∣ a.s.−→ 0.

If we define S̃N (ρ) = 1−ρ
1−(1−ρ)cN

1
n

∑n
i=1

ziz
∗
i

d̃i(ρ)
+ρIN , we therefore

have:

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉk

N (ρ)b− a∗S̃kN (ρ)b
∣∣∣ a.s.−→ 0.

The problem is thus reduced to showing:

sup
ρ∈Rκ

N1−ε
∣∣∣a∗S̃kN (ρ)b− a∗ŜkN (ρ)b

∣∣∣ a.s.−→ 0, (7)

a quantity which does not depend anymore on the less intractable
random variables di(ρ). The proof of (7) is however quite involved
and relies on the use of standard but very technical tools of random
matrix theory. The complete details can be found in [18].

3. APPLICATION TO THE GLRT DETECTOR

We provide here an application to the detection of a knownN -variate
signal embedded in impulsive noise. The detection of the signal of
interest consists in deciding between the following hypothesis:

y =

{
x, H0

αp + x, H1

where α > 0 accounts for the unknown propagation attenuation and
x follows the same model described in (2). In order to estimate
the covariance of the noise CN , we assume that we have already
collected n observations corresponding to purely noise signals. We
consider the robust-scatter estimate ĈN (ρ) in (1). The GLRT corre-
sponding to the above hypothesis testing [8] reads:

TN (ρ)
H1

≷
H0

Γ

for some detection threshold Γ where

TN (ρ) ,
|y∗Ĉ−1

N (ρ)p|√
y∗Ĉ−1

N (ρ)y
√

p∗Ĉ−1
N (ρ)p

.

Our objective is to characterize the false alarm probability of the de-
tector. That is, under H0 (i.e., y = x), we shall evaluate the proba-
bility P (TN (ρ) > Γ). Since for fixed Γ, it appears that TN (ρ)

a.s.−→
0 and every ρ, which does not say much about the actual test per-
formance, we rather consider the case where Γ = N−

1
2 t for some

t > 0. In this case, our objective is to characterize the false alarm
probability:

P

(
TN (ρ) >

t√
N

)
Based on the result of Theorem 2 we prove the following:
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Theorem 3. For z ∈ R−, let m(z) be the unique real positive solu-
tion to:

m(z) =

(
−z + c

∫
(1− ρ)x

1 + (1− ρm(z))x
ν(dx)

)−1

Let N,n→∞ with cN → c ∈ (0,∞). Then,

sup
ρ∈Rκ

∣∣∣∣∣P
(
TN (ρ) >

t√
N

)
− exp

(
− t2

2σ2
N (ρ)

)∣∣∣∣∣→ 0,

where ρ = ρ

ρ+ 1
γN (ρ)

1−ρ
1−(1−ρ)c

and:

σ2
N (ρ) =

1
2
p∗CNQ2

N (ρ)p

p∗QN (ρ)p 1
N

trCNQN (ρ)

× 1

(1− c(1− ρ)2m(−ρ)2 1
N

trC2
NQ2

N (ρ))

with QN (ρ) ,
(
IN + (1− ρ)m(−ρ)CN

)−1

The result of theorem 3 provides an analytical characterization
of the performance of the GLRT for each ρ which suggests in par-
ticular the existence of values for ρ which minimize the false alarm
probability for given t > 0. Note, in passing, that, independently
of t, minimizing the false alarm rate is asymptotically equivalent to
minimizing σ2

N (ρ) over ρ. However, the expression of σ2
N (ρ) de-

pends on the covariance matrix CN which is unknown and therefore
does not allow for an immediate online choice of ρ. To handle this
problem, the following proposition provides a consistent estimate for
σ2
N (ρ) based on ĈN (ρ) and p:

Proposition 1 (Empirical performance estimation). For ρ ∈
(max{0, 1 − c−1

N }, 1) and ρ defined as above, let σ̂2
N (ρ) be given

by

σ̂2
N (ρ) ,

1

2

1− ρ · p
∗Ĉ−2

N
(ρ)p

p∗Ĉ−1
N

(ρ)p
· 1
N

tr ĈN (ρ)(
1− c+ cρ 1

N
tr Ĉ−1

N (ρ) · 1
N

tr ĈN (ρ)
)

× 1(
1− ρ 1

N
tr Ĉ−1

N (ρ) · 1
N

tr ĈN (ρ)
) .

Also let σ̂2
N (1) , limρ↑1 σ̂

2
N (ρ). Then we have

sup
ρ∈Rκ

∣∣σ2
N (ρ)− σ̂2

N (ρ)
∣∣ a.s.−→ 0.

Since both the estimation of σ2
N (ρ) in Proposition 1 and the con-

vergence in Theorem 3 are uniform over ρ ∈ Rκ, we have the fol-
lowing result.

Corollary 2 (Empirical performance optimum). Let σ̂2
N (ρ) be de-

fined as in Proposition 1 and define ρ̂∗N as any value satisfying

ρ̂∗N ∈ argminρ∈Rκ
{
σ̂2
N (ρ)

}
(this set being in general a singleton). Then, for every t > 0,

P
(√

NTN (ρ̂∗N ) > t
)
− inf
ρ∈Rκ

{
P
(√

NTN (ρ) > t
)}
→ 0.

4. NUMERICAL RESULTS

In this section, we assess the accuracy of our theoretical results
by means of simulations. In particular, we show in Fig 1 that as
predicted by Theorem 3, the statistic TN (ρ) is uniformly well-
approximated by a Rayleigh distribution random variable RN (ρ)
with parameter σN (ρ). We note that good approximations are
achieved although the number of sensors and of observations are
far from the asymptotic regime. In a second experiment, we jus-

0 1 2 3 4
0

0.2

0.4

0.6

D
en

si
ty

Empirical hist. of TN (ρ)

Distribution ofRN (ρ)

Fig. 1. Histogram distribution function of the
√
NTN (ρ) versus

RN (ρ), N = 20, p = N−
1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|,

cN = 1/2, ρ = 0.2.

tify the applicability of using ρ̂∗N . For that, we represent in Fig. 2
false alarm rates of the detector P (TN (ρ̂∗N ) > Γ) with respect to
the threshold Γ = t/

√
N for N = 20 and N = 100, along with

its asymptotic approximations exp
(
−t2/(2σ∗2N

)
where σ∗2N is the

minimizer of σ2
N (ρ). These rates are numerically obtained out of

106 Monte Carlo simulations. This figure shows that even errors of
order 10−4 are well-approximated for large N , while only errors of
order 10−2 can be evaluated for small N .

0 0.2 0.4 0.6 0.8 1
10−4

10−3

10−2

10−1

100

N = 100

N = 20

Γ

Fa
ls

e
al

ar
m

ra
te

Limiting theory
Detector

Fig. 2. False alarm rateP (TN (ρ̂∗N ) > Γ) forN = 20 andN = 100,
p = N−

1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|, cN = 1/2.
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