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ABSTRACT

In hypothesis testing, the phenomenon of label noise, in which hy-
pothesis labels are switched at random, contaminates the likelihood
functions. In this paper, we develop a new method to determine the
decision rule when we do not have knowledge of the uncontaminated
likelihoods and contamination probabilities, but only have knowl-
edge of the contaminated likelihoods. In particular we pose a min-
imax optimization problem that finds a decision rule robust against
this lack of knowledge. The method simplifies by application of
linear programming theory. Motivation for this investigation is pro-
vided by problems encountered in workforce analytics.

Index Terms— label noise, linear programming, minimax, sig-
nal detection theory, workforce analytics

1. INTRODUCTION

Label noise in hypothesis testing problems results in the cross-
contamination of the likelihood functions and possible degradation
in detection performance if not accounted for when determining
a decision rule. In this paper, we propose a linear programming
framework for robustly dealing with contaminated likelihoods.
Specifically, we propose an algorithm for obtaining a minimax opti-
mal decision rule under label noise that is applicable under general
likelihood models.

We are motivated by problems encountered in workforce analyt-
ics: data-driven decision making to manage the human capital of a
corporation. For example, decision makers may want to use human
resources data to predict whether or not an employee will voluntarily
resign within the next 12 months [1], or to determine whether an em-
ployee from another division is a suitable candidate to fill an open
position on a team in their division, based on skills and expertise
data about the employee.1 We face label noise and contamination of
hypotheses in both examples. In the voluntary resignation example,
we can take all employees that resigned in the recent past as sam-
ples from the alternative hypothesis and all employees that are cur-
rently active as samples from the null hypothesis. However, among
currently active employees, some will resign in the coming months.
Therefore, we are not in a position to observe an uncontaminated
null distribution. In the suitable candidate example, we can take all
employees in the decision maker’s team as samples from the alter-
nate distribution and all other employees as samples from the null
distribution. However, not all team members may be suitable for the
open position and not all other employees are unsuitable (which is
why this problem is posed in the first place). Thus in this example,
we observe contaminated versions of both likelihoods.

The problem of contaminated likelihoods in binary hypothesis
testing was recently studied in considerable generality in [2, 3]. The

1The types of data used for these purposes are generally necessary to the
corporation’s operations and part of the employment contract, and as such do
not involve special privacy considerations.

theoretical framework in the present work is largely guided by [2,
3]. These previous works assume that the true likelihoods have an
irreducibility property (described more fully in Section 3) that allows
consistency results to be established. However, the assumption of
irreducibility is restrictive. It is not satisfied for example by two
Gaussian distributions with different variances, nor is it likely to be
satisfied by real-world distributions such as may be encountered in
workforce analytics. A contribution of the current paper in Section 3
is to remove the irreducibility assumption and extend the analysis to
arbitrary true likelihoods. Furthermore, the approach taken herein,
described in Section 4, differs fundamentally from [2, 3] in focusing
not on consistent learning of a particular contamination model, but
rather on designing hypothesis tests that are robust to uncertainty
in the model. In Section 5, the utility of the robust viewpoint is
demonstrated in two numerical examples.

More broadly, various types of label noise have been studied in
the machine learning literature, including random, adversarial, and
observation-dependent, and noise that affects different classes sym-
metrically and asymmetrically [4]. However, the vast majority of
that work has been devoted to specific supervised classification al-
gorithms operating on finite training data, see references in [2,3]. In
contrast, our work deals with the regime encountered in signal detec-
tion theory and hypothesis testing, not the regime with finite training
samples. Therefore, we work with likelihood ratio tests and true er-
ror probabilities rather than with specific classification algorithms
and generalization bounds. Somewhat more related is the mixture
modeling approach of [5, 6], which attempts to learn the contamina-
tion model using the EM algorithm. This approach however requires
parametric assumptions on the true likelihoods that we do not make.
In the statistical signal processing literature, notions of robustness
similar to that discussed in Section 4 have been explored [7, 8], for
example to cope with uncertainty in prior probabilities [9, 10] and
likelihoods [11, 12], but not for contamination/label noise.

2. PROBLEM STATEMENT

We consider the binary hypothesis testing problem of deciding be-
tween a null hypothesis H = h0 and an alternative hypothesis H =
h1 based on observation of a random variable Y . Under hypothe-
sis H = h0, Y follows the probability distribution P0, while un-
der H = h1, Y follows distribution P1. A decision rule Ĥ is de-
sired that maps every possible observation Y = y to either h0 or
h1. For a rule Ĥ , define R0(Ĥ) = Pr(Ĥ = h1 | H = h0) and
R1(Ĥ) = Pr(Ĥ = h0 | H = h1) to be the Type I and Type II error
probabilities. In this paper we focus on the Bayesian formulation in
which the hypotheses have prior probabilities Pr(H = h0) = q0,
Pr(H = h1) = 1 − q0, and the performance measure is the Bayes
risk

RB(Ĥ) = c01q0R0(Ĥ) + c10(1− q0)R1(Ĥ), (1)

where c01 and c10 are the costs of Type I and Type II errors.
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Given knowledge of the conditional distributions P0 and P1, it
is straightforward to construct a likelihood ratio test that minimizes
the Bayes risk [13]. However, in the contaminated version of the
problem considered herein, P0 and P1 are not known. Instead, we
have access to the contaminated distributions

P̃0 = (1− π0)P0 + π0P1, (2a)

P̃1 = (1− π1)P1 + π1P0, (2b)

where the contamination proportions π0, π1 ∈ [0, 1] are also un-
known. The following constraint is placed on π0, π1,

π0 + π1 < 1, (3)

to resolve an interchange ambiguity and with essentially no loss of
generality. Indeed, if π0 + π1 > 1, then as noted in [2], interchang-
ing P0 and P1 yields complementary proportions 1 − π0, 1 − π1

satisfying (1−π0)+(1−π1) < 1. If π0+π1 = 1, then (2) implies
that P̃0 = P̃1 and discrimination is not possible.

As discussed in [2], it is not possible in general to design a test
Ĥ that minimizes the Bayes risk (1) given only the contaminated dis-
tributions P̃0, P̃1 and no knowledge of P0, P1, π0, π1. Therefore in
this paper we revise the objective to that of choosing Ĥ to be robust
to the uncertainty in the true distributions P0, P1, subject to limited
additional input. We note that in the absence of further conditions,
there is a large range of possible solutions to (2). In particular, it
cannot be ruled out that there is no contamination, i.e. π0 = π1 = 0,
P0 = P̃0, and P1 = P̃1. In the sequel, we seek to identify conditions
that require minimal knowledge of or assumptions on P0, P1, π0, π1

while also restricting uncertainty in a meaningful way in terms of
Bayes risk.

We focus in this paper on the population setting where the dis-
tributions P̃0 and P̃1 are known exactly. Our results can be extended
fairly straightforwardly to the finite-sample setting where P̃0 and
P̃1 are approximated using training data, for example following the
learning-theoretic approach of [2]. In the finite-sample case, the lack
of knowledge of P0, P1 translates into an inability to draw samples
from P0, P1.

3. CONTAMINATION MODEL THEORY

In this section we summarize results that precisely characterize the
possible solutions (P0, P1, π0, π1) to the contamination model (2).
These results generalize parallels in [2] as discussed shortly. Due to
space constraints, we refer the reader to [14] for full proofs.

First we recall some definitions from [2]. For probability distri-
butions P and Q, define the maximal mixture proportion ν∗(P,Q)
as

ν∗(P,Q) = max{α ∈ [0, 1] :

∃ probability distribution S : P = αQ+ (1− α)S}. (4)

One way of interpreting ν∗(P,Q) is as the infimum of the ratio
p(x)/q(x) if P and Q have probability densities p(x) and q(x) [3,
Lem. 5]. From this it can be seen that ν∗(P,Q) is not necessarily
symmetric. If ν∗(P,Q) = 0, P is said to be irreducible with re-
spect to Q, and if ν∗(Q,P ) = 0 also, then P and Q are mutually
irreducible. Many of the results in [2] depend on the assumption
that the true distributions P0 and P1 are mutually irreducible. This
assumption is relaxed in the present paper.

The first result below relates maximal mixture proportions be-
tween P0 and P1 to mixed counterparts involving both pure and con-
taminated distributions.

Lemma 1. Under condition (3),

ν∗(P0, P̃1) =
ν∗(P0, P1)

1− π1 + π1ν∗(P0, P1)
,

ν∗(P1, P̃0) =
ν∗(P1, P0)

1− π0 + π0ν∗(P1, P0)
.

Proof outline. The proof involves showing that a decomposition of
P0 in terms of P1 and a distribution Q implies a decomposition of P0

in terms of P̃1 and Q, and vice versa. Combining the implications
yields the equalities in the lemma. Details can be found in [14].

This lemma generalizes [2, Lem. 3], which states that ν∗(P0, P̃1) =
0 if and only if ν∗(P0, P1) = 0, and similarly for the second equa-
tion.

Given condition (3), the contamination model (2) has an equiv-
alent representation as specified by [2, Lem. 1]:

P̃0 = (1− π̃0)P0 + π̃0P̃1, π̃0 =
π0

1− π1
∈ [0, 1), (5a)

P̃1 = (1− π̃1)P1 + π̃1P̃0, π̃1 =
π1

1− π0
∈ [0, 1). (5b)

This alternative form makes clear that once (P̃0, P̃1) and the mod-
ified parameters (π̃0, π̃1) (or equivalently (π0, π1)) are fixed,
(P0, P1) are also specified exactly. Using (5), [2, Cor. 1] shows
that π̃0 and π̃1 are uniquely determined under the irreducibility con-
ditions ν∗(P0, P̃1) = ν∗(P1, P̃0) = 0. The next lemma provides
general expressions for π̃0, π̃1 that do not require irreducibility. The
proof of this lemma in [14] is based on an extension of [2, Cor. 1].

Lemma 2. The contamination model (5) has a unique solution in
(π̃0, π̃1) in terms of maximal mixture proportions:

π̃0 =
ν∗(P̃0, P̃1)− ν∗(P0, P̃1)

1− ν∗(P0, P̃1)
,

π̃1 =
ν∗(P̃1, P̃0)− ν∗(P1, P̃0)

1− ν∗(P1, P̃0)
.

Combining Lemmas 1 and 2 as detailed in [14] yields a charac-
terization of the contamination proportions π0, π1.

Theorem 1. Under condition (3), we have the relations

π0 + ν∗(P̃0, P̃1)π1 =
ν∗(P̃0, P̃1)− ν∗(P0, P1)

1− ν∗(P0, P1)
,

ν∗(P̃1, P̃0)π0 + π1 =
ν∗(P̃1, P̃0)− ν∗(P1, P0)

1− ν∗(P1, P0)
.

Since P̃0, P̃1 and hence ν∗(P̃0, P̃1), ν∗(P̃1, P̃0) are assumed to be
known, Theorem 1 can be interpreted as a system of equations re-
lating π0, π1 to the maximal proportions ν∗(P0, P1), ν∗(P1, P0)

for the pure distributions. If ν∗(P̃0, P̃1), ν∗(P̃1, P̃0) < 1, i.e., if
P̃0 ̸= P̃1, then this system is invertible and Theorem 1 describes a
bijection.

Fig. 1 depicts the set of feasible (π0, π1) values given the con-
taminated maximal proportions ν∗(P̃0, P̃1), ν∗(P̃1, P̃0). The solid
outer lines correspond to the mutually irreducible case, namely
ν∗(P0, P1) = ν∗(P1, P0) = 0 in Theorem 1, and the intersection
of the lines is the solution characterized in [2, Prop. 3]. Theorem 1
generalizes to the interior of the region by specifying solutions for
nonzero values of ν∗(P0, P1), ν∗(P1, P0). In particular, the dashed
lines in Fig. 1 are lines of constant ν∗(P0, P1) or ν∗(P1, P0) and
are parallel to the boundary lines. This geometry is used in the next
section to describe uncertainty in π0, π1.
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Fig. 1. Region of feasible contamination proportions (π0, π1) given
contaminated distributions P̃0 and P̃1.

4. CONTAMINATION-ROBUST HYPOTHESIS TESTING

This section discusses the determination of decision rules that are
robust to uncertainty in the contamination proportions π0 and π1.
Defining π = (π0, π1), we rewrite the Bayes risk (1) as follows,

RB(Ĥ,π) = c01q0R0(Ĥ,π) + c10(1− q0)R1(Ĥ,π), (6)

to make explicit the dependence on the contamination proportions.
From (5), the two error probabilities under the true distributions P0,
P1 can be expressed as

R0(Ĥ,π) =
(1− π1)R̃0(Ĥ)− π0(1− R̃1(Ĥ))

1− π0 − π1
, (7a)

R1(Ĥ,π) =
(1− π0)R̃1(Ĥ)− π1(1− R̃0(Ĥ))

1− π0 − π1
. (7b)

The performance thus depends on the error probabilities R̃0(Ĥ),
R̃1(Ĥ) under the contaminated distributions, which can be deter-
mined for fixed decision rule Ĥ , and π0, π1, which are only partially
known.

The set of possible (π0, π1) values is constrained by knowl-
edge of P̃0 and P̃1 as shown in Fig. 1. In addition to these initial
constraints, we also consider lower and/or upper bounds on π0, π1

and the maximal mixture proportions ν∗(P0, P1), ν∗(P1, P0) for the
pure distributions. As seen from Theorem 1 and Fig. 1, bounds on
ν∗(P0, P1), ν∗(P1, P0) correspond to linear inequalities in π0, π1.
It follows that the feasible region for (π0, π1) is in general a convex
polygon, which we may represent as a system of linear inequalities:

Π = {π : aT
i π ≤ bi, i = 1, . . . ,m}

with appropriate choices of ai ∈ R2 and bi ∈ R.
The additional bounds on π0, π1, ν∗(P0, P1), ν∗(P1, P0) may

be provided by application-specific knowledge and past experience.
For example, with voluntary resignation, we can examine the resig-
nation rate historically and use it to roughly characterize or bound
π0. Moreover, examining data from more than a year in the past,
we can observe P0 and P1 without contamination because any em-
ployee who was active then and has not resigned yet is by definition
not a contaminated sample. Such historical P0 and P1 can be used

to bound present values of ν∗(P0, P1) and ν∗(P1, P0).2 In the case
of finding suitable internal candidates for openings, similar openings
filled in adjacent groups can provide bounds on π0, π1, ν∗(P0, P1),
ν∗(P1, P0).

In this paper, the decision rule Ĥ is chosen to minimize the
Bayes risk subject to worst-case uncertainty in (π0, π1) within the
set Π:

ĤB = arg min
Ĥ

max
π∈Π

RB(Ĥ,π). (8)

Alternative formulations include minimizing the worst-case devia-
tion from the true Bayes risk (instead of the absolute Bayes risk in
(8)) and minimizing the average Bayes risk over Π with respect to
some distribution for π. We leave these alternatives for future work.

The inner maximization in (8) can be restricted to a subset of the
vertices of Π. For a vertex π ∈ Π, define I(π) ⊆ {1, . . . ,m} to
be the set of constraints aT

i π ≤ bi that are met with equality (active
constraints), and cone ({ai, i ∈ I(π)}) to be the cone formed by
non-negative combinations of the corresponding ai. We use R2

− as
a shorthand for the non-positive quadrant of R2.

Lemma 3. Assume that Ĥ satisfies R̃0(Ĥ) + R̃1(Ĥ) ≤ 1. Let πk,
k = 1, . . . , V , be the vertices of Π such that

cone
(
{ai, i ∈ I(πk)}

)
∩ R2

− ̸= ∅. (9)

Then
max
π∈Π

RB(Ĥ,π) = max
k=1,...,V

RB(Ĥ,πk).

Abbreviated proof. The restriction to vertices of Π follows from the
fact that RB(Ĥ,π) is a linear-fractional function of π for fixed Ĥ .
This property is seen by substituting (7) into (6) to obtain

RB(Ĥ,π) =
cTπ + d

1− π0 − π1
, (10)

where c ∈ R2 and d ∈ R do not depend on π (explicit expressions
are omitted here). Given (10), the maximization of RB(Ĥ,π) may
be carried out as a search for the largest t ≥ 0 for which the linear
program

max
π∈Π

cTπ + d− t(1− π0 − π1) (11)

has a non-negative optimal value, implying that the superlevel set
{π ∈ Π : RB(Ĥ,π) ≥ t} is non-empty. Since (11) is a lin-
ear optimization over a bounded polygon, there exists a vertex of
Π that is optimal [15, Thm. 2.8]. This holds in particular for t =

maxπ∈Π RB(Ĥ,π) and hence it is sufficient to consider only the
vertices of Π in maximizing RB(Ĥ,π).

The restriction to vertices satisfying (9) is due to the KKT opti-
mality condition for the maximization of RB(Ĥ,π):

∇πRB(Ĥ,π) =
∑

i∈I(π)

µiai, µi ≥ 0, (12)

which is a necessary condition because Π is defined by linear in-
equalities [16, Prop. 3.3.7]. It is shown in [14] that the gradient
with respect to π on the left-hand side of (12) belongs to R2

−, while
the right-hand side of (12) can range over cone

(
{ai, i ∈ I(π)}

)
.

Therefore it suffices to consider vertices satisfying (9).

2One may ask why historical P0 and P1 cannot simply be used to deter-
mine the decision rule in the present; this is not possible in dynamic business
environments where the resignation rate within job roles, skill sets, profes-
sions, and organizational units—which are all observations to predict resig-
nation—changes rapidly due to technology trends and management changes.
It is the level of differentiation between the classes that we assume does not
change much over time, allowing us to bound ν∗(P0, P1) and ν∗(P1, P0).
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Remark. The condition R̃0(Ĥ) + R̃1(Ĥ) ≤ 1 is satisfied by any
decision rule Ĥ that is at least as good as random guessing. Hence
no generality is lost.

Combining (8) and Lemma 3 yields

ĤB = arg min
Ĥ

t s.t. RB(Ĥ,πk) ≤ t, k = 1, . . . , V. (13)

In the two-dimensional case considered here, the number V of ver-
tices satisfying (9) is very small and π1, . . . ,πV are easily enu-
merated. Therefore (13) represents a significant simplification com-
pared to (8). However, enumeration becomes increasingly difficult in
higher dimensions that would arise in hypothesis testing with more
than two hypotheses.

5. NUMERICAL EXAMPLES

In this section we illustrate the proposed minimax procedure via
two examples with likelihoods that are not mutually irreducible:
Gaussian distributions with different means and different variances,
and exponential distributions with different inverse scale parame-
ters. The Gaussians example provides a rough model for features
that predict voluntary resignation, since features such as time since
the last job promotion and annual performance rating tend to be
approximately normal in many organizations. The exponentials ex-
ample provides a rough model for abilities among a high-performing
group, which arises when finding suitable candidates.

Consider P0 ∼ N (µ0, σ
2
0) and P1 ∼ N (µ1, σ

2
1) where µ0 ̸=

µ1 and, without loss of generality, σ0 < σ1. For this problem, the
uncontaminated error probabilities for a likelihood ratio test with
threshold value γ are:

R0(γ) = Q
(

y+−µ0
σ0

)
+Q

(
−y−+µ0

σ0

)
R1(γ) = 1−Q

(
y+−µ1

σ1

)
−Q

(
−y−+µ1

σ1

)
,

where Q(y) = 1√
2π

∫∞
y

exp(−y′2/2)dy′, and y+ and y− are the
solutions to the quadratic equation:

(σ2
1−σ2

0)y
2+2(µ1σ

2
0−µ0σ

2
1)y+µ2

0σ
2
1−µ2

1σ
2
0−2σ2

0σ
2
1 ln

(
γ σ1

σ0

)
= 0.

We examine the situation in which µ0 = 0, µ1 = 0.2, σ0 = 1,
and σ1 = 2. Additionally, for the Bayes risk, we consider the simple
case when q0 = 0.5 and c01 = c10 = 1. The true contamination
proportions, unknown to an observer, are π0 = 0.2 and π1 = 0.3.
These contamination proportions result in ν∗(P̃0, P̃1) = 0.2857 and
ν∗(P̃1, P̃0) = 0.7202, which are observed. Additional informa-
tion on the contamination gives us the constraints π0 ≥ 0.05 and
π1 ≥ 0.1, as well as π0+ν∗(P̃0, P̃1)π1 ≥ 0.2 and ν∗(P̃1, P̃0)π0+
π1 ≥ 0.25. The last two inequalities follow from Theorem 1 and
upper bounds on ν∗(P0, P1), ν∗(P1, P0). With these constraints,
the polygon Π has six vertices.

After performing the inner maximization of the minimax proce-
dure, we find the vertex of Π that maximizes the Bayes risk to be
(0.1619, 0.1334). This maximum Bayes risk is shown in Fig. 2(a)
as a function of the threshold λ applied to the contaminated likeli-
hood ratio (λ is related to γ through a transformation derived in [2,
Prop. 1]). The minimum value of this function, i.e. the minimax
Bayes risk we seek, is 0.3845.

The figure also shows the Bayes risk if we use the unknown true
contamination proportions (which equals the uncontaminated Bayes
risk) and the Bayes risk if we use the (0, 0) point, i.e., we do not

1 1.5 2 2.5 3 3.5

0.35

0.4

0.45

0.5

λ

R
B

(a)

0.4 0.6 0.8 1 1.2 1.4

0.35

0.4

0.45

0.5

λ

R
B

(b)

Fig. 2. Bayes risk as a function of the threshold on the contaminated
likelihood ratio for (a) Gaussian example and (b) exponential exam-
ple: using unknown true contamination proportions (dashed), max
solution (solid), and (0, 0) contamination proportions (dash-dot).

account for contamination. The minimum Bayes risk using the true
contamination proportions is 0.3372 and the minimum when using
(0, 0) is 0.4186. The minimax solution is between these two values.
Notably, it is less pessimistic than the default (0, 0) solution. The
solution under irreducibility [2] is not selected under the minimax
criterion as it is too optimistic about the Bayes risk value.

As a second example, consider P0 ∼ E(α0) and P1 ∼ E(α1)
where without loss of generality, α0 < α1. For this problem, the
uncontaminated error probabilities for a likelihood ratio test thresh-
old value γ are: R0(γ) = 1− e−α0y

∗
and R1(γ) = e−α1y

∗
, where

y∗ = ln
(

α0
α1

γ
)
/(α0 − α1). We set α0 = 1 and α1 = 2 and

(to economize on space for exposition) keep all other parameters the
same as in the first example. With these exponential likelihoods and
parameter settings, ν∗(P̃0, P̃1) = 0.7059 and ν∗(P̃1, P̃0) = 0.3750
and the resulting Π has five vertices. The maximizing vertex is
(0.1619, 0.1334) and the maximum Bayes risk is shown in Fig. 2.
The minimax Bayes risk is 0.4130, which lies between the minimum
Bayes risk with known contamination proportions, 0.3750, and the
minimum Bayes risk using proportions (0, 0), 0.4375, in the same
manner as the previous example.

6. CONCLUSION

In this paper, we have examined the problem of contaminated likeli-
hood functions that arise due to label noise in hypothesis testing. In
contrast to previous work on the subject which derived consistency
results for the case when the likelihoods are mutually irreducible,
we deal with arbitrary likelihoods and obtain decision rules robust
to uncertainty in the contamination proportions. Toward this end,
we have posed an optimization problem that is naturally subject to
linear constraints and shown that its objective function is a linear-
fractional function. Therefore, the optimization problem reduces to
linear programs that can be simplified using the KKT conditions into
a search over certain vertices of the constraint set. We have shown
the method on two numerical examples.

3410



7. REFERENCES

[1] M. Singh, K. R. Varshney, J. Wang, A. Mojsilović, A. R. Gill,
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