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ABSTRACT

We study the problem of learning constitutive features for the ef-
fective representation of graph signals, which can be considered as
observations collected on different graph topologies. We propose to
learn graph atoms and build graph dictionaries that provide sparse
representations for classes of signals, which share common spec-
tral characteristics but reside on the vertices of different graphs. In
particular, we concentrate on graph atoms that are constructed on
polynomials of the graph Laplacian. Such a design permits to ab-
stract from the precise graph topology and to design dictionaries that
can be trained and eventually used on different graphs. We cast the
dictionary learning problem as an alternating optimization problem
where the dictionary and the sparse representations of training sig-
nals are updated iteratively. Experimental results on synthetic graph
signals representing common processes on graphs show that our dic-
tionaries are able to capture the important components in graph sig-
nals. Further experiments on traffic data confirm the benefits of our
dictionaries in the sparse approximation of signals capturing traffic
bottlenecks.

Index Terms— sparse approximations, graph signal processing

1. INTRODUCTION

Many data analysis and processing tasks nowadays have to handle
large structured datasets, where the structure information actually
carry important information about the nature of the observations or
data measurements. Examples of such datasets can be found in nu-
merous application domains, such as transport, social or computer
networks, brain analysis or even images. Such data can be repre-
sented as graph signals, where function values on the graph vertices
represent the observed data, and the connection between vertices de-
note the relationship between different observations. As a result, a
graph signal can be considered as an observation of a process evolv-
ing on a particular network domain [1], where the actual signal value
depends on both the causes of the underlying process and the graph
topology.

When graphs signals mostly capture the effect of a few processes
on a graph topology, they can be modelled as the linear combina-
tions of a small number of constitutive components, which we call
graph atoms. In practice however, these signals do not all live on the
exact same graph topology. Still, different graphs signals on differ-
ent topologies may share similar spectral characteristics in the case
where the underlying processes are similar. For example, a heat dif-
fusion process may generate different graphs signals for different
graph topology instances, even if the diffusion process always fol-
lows the same model. In order to have effective signal representa-
tions, it becomes therefore important to design a learning strategy
that can abstract from the exact graph topology of each graph signal,
and identify the common causes in specific classes of graph signals.

Several representation methods have been proposed for signals
living on graphs, but they are adapted to general classes of signals.
The graph Fourier transform for example has been shown to sparsely
represent smooth graph signals [2]. Wavelet transforms such as dif-
fusion wavelets [3], spectral graph wavelets [4], and critically sam-
pled two-channel wavelet filter banks [5] mostly target piecewise-
smooth graph signals. Then, vertex-frequency frames [6] can be
used to analyze signal content at specific vertex and frequency lo-
cations. However, these methods cannot be adapted to specific types
of graph signals. Such adaptation is generally achieved by training
a dictionary that can sparsely represent a particular class of signals.
Unfortunately, existing algorithms for dictionary learning techniques
for graph signals [7], [8] rely on the assumption that all the train-
ing signals lie on the same graph, which is pretty constraining in
practice. Moreover, classical dictionary learning techniques such as
K-SVD [9] cannot handle training signals with different dimension-
ality, thus they cannot be applied to our problem.

In this paper, we propose a dictionary learning algorithm for
graph signals that possibly live on different weighted graphs. Given
a class of graph signals that live on a set of weighted graphs, we want
to construct an overcomplete dictionary of atoms that can sparsely
represent graph signals as linear combinations of only a few atoms
of the dictionary. We want the atoms to capture the common com-
ponents in the different graph signals, even if they lie on different
topologies. We focus on the spectral characteristics of such con-
stitutive components and propose to learn atoms that are polyno-
mial functions of the graph Laplacian. The polynomial coefficients
therefore define a kernel that can generate signals on different graph
topologies. We cast the dictionary learning problem as an alternat-
ing optimization problem, where the polynomial coefficients of the
atoms and the sparse codes of the training signals are updated itera-
tively. We then perform experiments on graph signals that represent
common processes on different graphs and show that our dictionary
learning method is able to recover the core components of these sig-
nals. We finally confirm the performance of our algorithm on traffic
data, where the learnt dictionary is shown to provide better sparse ap-
proximations than non-adaptive representations, or representations
that are optimized on different graphs independently.

Finally, as our algorithm permits to learn an effective graph sig-
nal representation from training signals living on different graphs, it
surely provides important benefits in addition to effective approxi-
mation performance. In practice, it is common to have graph signals
that live on different topologies or on graphs that do no have exactly
the same number of nodes. Then, it might be necessary to segment
large graphs into smaller graphs for complexity reasons, or for aug-
menting the number of training data. In all these cases, our algorithm
is helpful as it goes beyond the limitations of traditional learning so-
lutions that require training signals living on a fixed topology.
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2. MULTI-GRAPH DICTIONARY LEARNING

2.1. Representation of graph signals

We consider a weighted and undirected graph G = (V, E ,W ), where
V and E represent the vertex and edge sets of the graph G, and W
represents the matrix of its positive edge weights, with W (i, j) de-
noting the weight of an edge connecting vertices i and j, and D
is the diagonal degree matrix whose ith diagonal element is equal
to the sum of the weights of all the edges incident to vertex i [10].
A graph signal y in the vertex domain is a real-valued function de-
fined on the vertices of the graph G, such that y(v) is the value of
the function at vertex v ∈ V . The normalized graph Laplacian op-
erator is defined as L = I − D−

1
2WD−

1
2 , and it is a real sym-

metric matrix that has a complete set of orthonormal eigenvectors
with corresponding nonnegative eigenvalues. We denote its eigen-
vectors by χ = [χ1, χ2, ..., χN ], and the spectrum of eigenvalues by

Λ :=
{

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ(N−1) ≤ 2
}

.
We consider a general class of graph signals that are linear com-

binations of (overlapping) graph patterns positioned at different ver-
tices on the graph. Each pattern captures the local variation of the
signal in the neighborhood of a vertex, and it can be considered as a
function whose values in the neighborhood depend on the local con-
nectivity around that vertex. We represent the translation of a pattern
across the vertices of the graph [4], [6] through a graph operator de-
fined as

ĝ(L) = χĝ(Λ)χT , (1)

where χ,Λ are the eigenvectors and eigenvalues of the graph Lapla-
cian matrix. The generating kernel ĝ(·), that is a function of the
eigenvalues of the Laplacian, characterizes the graph pattern in the
spectral domain. In particular, if the generating kernel is smooth,
ĝ(L) consists of a set of N columns, each representing a local-
ized atom, generated by the same kernel, and positioned on different
nodes on the graph [4], [1]. One can thus design graph operators con-
sisting of localized atoms in the vertex domain by taking the kernel
ĝ(·) in (1) to be a smooth polynomial function of degree K [4], [7]:

ĝ(λ`) =

K∑
k=0

αkλ
k
` , ` = 0, ..., N − 1. (2)

The corresponding operator is then defined as

ĝ(L) = χ

(
K∑
k=0

αkΛk
)
χT =

K∑
k=0

αkLk. (3)

Note that the atom given by column n is equal to the polynomial ĝ(·)
of orderK translated to the vertex n. The polynomial structure of the
kernel ĝ(·) ensures that the resulting atom has its support contained
in a K-hop neighborhood of vertex n [4]. A graph dictionary is then
defined as a concatenation of different graph operators or subdic-
tionaries. It takes the form D = [ĝ1(L), ĝ2(L), ..., ĝS(L)], where
each subdictionary captures a different graph pattern in the spectral
domain that is translated across all the vertices of the graph. Finally,
a graph signal y can be expressed as a linear combination of a set of
atoms generated from different graph kernels {ĝs(·)}s=1,2,...,S ,

y =

S∑
s=1

ĝs(L)xs,

where xs are the coefficients in the linear combination. For efficient
representations in many applications, these coefficients should be

sparse and they should capture the most important characteristics
of the graph signals [7]. Sparsity however largely depends on the
design of the dictionary, which in our signal model, depends on the
choice of the polynomial coefficients.

2.2. Learning dictionaries for sparse representation

In many applications, someone has to deal with signals that live
on different graphs but share some common spectral characteristics.
Hence, we propose a dictionary learning algorithm that constructs
graph atoms that are adapted to the representations of the signals on
each graph independently, and simultaneously allow to capture the
spectral similarities across the signals on the different graphs. In par-
ticular, we exploit the polynomial structure of the graph dictionaries,
as defined in the previous subsection, and we capture the spectral
components of the signals through the computation of kernels that
are similar across all the graph topologies.

Given a set of training signals Yt = [yt1, yt2, ..., ytMt ] ∈
RN×Mt , t = {1, 2, .., T}, living on the weighted graphs Gt, t =
{1, 2, ..., T}, our objective is to learn a common structure for the
different graph dictionaries Dt ∈ RN×NS that can efficiently rep-
resent all of the signals in Gt as linear combinations of only a
few of its atoms. For each graph Gt and the corresponding train-
ing signals Yt, we want to design a structured graph dictionary
Dt = [D1

t ,D2
t , ...,DSt ] that is a concatenation of a set of S subdic-

tionaries of the form

Dst = ĝs(Lt) = χt

(
K∑
k=0

αskΛkt

)
χTt =

K∑
k=0

αskLtk, (4)

where Lt denotes the Laplacian of the graph t, and χt,Λt, are the
corresponding eigenvectors and eigenvalues respectively. We thus
impose a dictionary structure that is a polynomial function of the
Laplacian and the coefficients of the polynomials, i.e., the gener-
ating kernel, capture the common information across the graphs in
the spectral domain. The polynomial coefficients are learned jointly
from the set of training signals on all graphs Gt’s, in order to cap-
ture the similarity between graph signals independently of the actual
graph topology. Therefore, the dictionary learning problem can be
cast as the following optimization problem:

argmin
α∈R(K+1)S , Xt∈RSN×Mt

{
T∑
t=1

1

Mt
||Yt −DtXt||2F + µ‖α‖22

}
subject to ‖Xm

t ‖0 ≤ T0, ∀m ∈ {1, ...,Mt},

Dst =

K∑
k=0

αskLkt ,∀s ∈ {1, 2, ..., S},

0 � Dst � c,∀s ∈ {1, 2, ..., S}, (5)

where Xm
t corresponds to column m of the coefficient matrix Xt,

and T0 is the maximum sparsity level of the coefficients of each
training signal. Since Dt has the form (4), the optimization problem
is equivalent to learning the parameters {αsk}s=1,2,...,S; k=1,2,...,K

that characterize the set of generating kernels, {ĝs(·)}s=1,2,...,S , and
are the same across all the graphs. We denote these parameters in
vector form in Eq. (5) with α = [α1; ...;αS ], where αs is a column
vector with (K + 1) entries.

The constraint on the spectrum guarantees that the kernels are
nonnegative and uniformly bounded by a given constant c. The value
of the parameter c does not affect the frequency behavior nor the lo-
calization of the atoms. It simply scales the magnitude of the kernel
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coefficients. Note that in the objective of the optimization problem
(5), we penalize the norm of the polynomial coefficients α in order
to (i) promote smoothness in the learned polynomial kernels, and (ii)
improve the numerical stability of the learning algorithm. In prac-
tice, a small value of µ is enough to guarantee the stability of the
solution while preserving large values in the polynomial coefficients.

The optimization problem (5) is not jointly convex, but it can be
approximately solved by alternating between the sparse coding and
dictionary update steps. In the first step, we fix the dictionary and
solve with respect to the sparse coding coefficients, using orthogonal
matching pursuit (OMP) [11] on each training signal. Before apply-
ing OMP, we normalize the atoms of the dictionary so that they all
have a unit norm. This step is essential for the OMP algorithm in
order to treat all of the atoms equally. After computing the sparse
codes, we renormalize the atoms of our dictionary to recover our
initial polynomial structure [12, Chapter 3.1.4] and the sparse cod-
ing coefficients in such a way that the product of the dictionary and
the sparse codes remains constant. In the second step, we fix the
sparse coding coefficients and update the dictionary by solving the
quadratic problem with respect to the parameters, α.

3. LEARNING OF COMMON GRAPH PROCESSES

In the following section, we quantify the performance of the pro-
posed algorithm on learning dictionaries for synthetic data models
that represent well-known processes. We build synthetic graph sig-
nals by choosing different graphs and computing the results of com-
mon diffusion processes on each of these graphs. We then learn
dictionaries for these synthetic graph signals and show that our al-
gorithm is able to recover the core components of the signals, which
can be sparsely represented as combinations of few graph atoms.

We first construct three different types of graphs with 500
vertices, namely, a graph whose edges are determined based on
Euclidean distances between vertices, and two graphs that follow
the Forest Fire model [13] and the Barabási-Albert model [14], re-
spectively. For the first graph, we generate the coordinates of the
vertices uniformly at random in the unit square, and compute the
edge weights between every pair of vertices using the Euclidean
distances between them and a Gaussian radial basis function (RBF)
exp
(
−d(i, j)2/2σ2

)
, with the width parameter σ = 0.04. We then

remove all the edges whose weights are smaller than 0.09. Next,
we use the Forest Fire (FF) model with forward burning probabil-
ity 0.1 to generate a random graph, and backward burning ratio
0.005. Finally, we use the Barabási-Albert (BA) model to generate a
scale-free random graph. Then, we consider three data models that
have been extensively used in the literature for applications such as
classification [15], 3D shape analysis [16], and graph matching [17],
for example. These models are the following:

1. Heat diffusion kernel: It is defined by choosing the kernel to
be an exponential function of the eigenvalues of the Laplacian
[15]:

ĝτ (λk) = e−τλk . (6)

Applying different powers τ of the heat diffusion operator to
an initial signal x describes the flow of the heat over the graph
when the rates of flows are proportional to the edge weights
of the graph. Due to the exponential function of the kernel,
this process mainly acts as a low frequency filtering, revealing
information about the global behaviour of the signal.

2. Wave kernel: By selecting the kernel

ĝτ (λk) = e
− (τ−log λk)2

2σ2 , (7)
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Fig. 1. Generating kernels {ĝs(·)}s=1,2,...,S as a function of the
eigenvalues.

the process defined by (1), captures a different physical model
that evaluates the average probability of a quantum particle
with a certain energy distribution to be located at a particular
vertex [18]. This model, contrary to the heat diffusion pro-
cess, has a natural notion of scale defined by τ , since it is a
function of the energy levels which are directly related to the
scales. Thus, it is more appropriate for capturing localized
information.

3. Spectral graph wavelet kernel: By selecting

ĝτ (λk) = g(τλk), (8)

with g(λk) properly chosen band pass filter, the process (1)
becomes the spectral graph wavelet frame [4]. The different
values of τ represent the different scales of the transform.

With the above models, we then construct graph signals as fol-
lows. For each graph, we generate a synthetic dictionary consisting
of S = 3 subdictionaries, i.e., 1500 atoms, of the form (1), generated
by the following kernels: (i) a heat kernel, with τ = 5, (ii), a wavelet
kernel for a fixed scale of τ = 4.1, which is set to be a cubic spline
as defined in [4, Section 8.1, Eq. (65)], with α = β = 2, x1 = 1,
x2 = 2, and (iii) a wave kernel, with τ = 0.01 and σ = 1/

√
2. The

training signals are generated by linearly combining T0 = 4 atoms
from the corresponding dictionary, with randomly generated coeffi-
cients. We use these training signals to learn a graph dictionary built
on polynomial functions of degree K = 15 of the Laplacian using
our dictionary learning algorithm. In all our experiments, we use the
sdpt3 solver [19] in the yalmip optimization toolbox [20] to update
the polynomial coefficients for fixed sparse codes in the learning al-
gorithm. For the sparse coding step in the testing phase, we use
OMP, where we first normalize the dictionary atoms to a unit norm.
In all the experiments, we set c = 10, µ = 10−4, and the maximum
number of iterations of the algorithm to 50.

The original and the learned kernels are illustrated in Fig. 1 as
a function of the eigenvalues of the Laplacian, for M = 400. We
observe that the learned kernels capture the spectral characteristics
of the original ones that represent the three data models used to con-
struct the training signals. It confirms that the polynomial atoms are
able to correctly approximate the processes represented by the graph
signals, despite the fact that these signals live on different graphs.

Then, we test the approximation performance of the learned dic-
tionary on a set of 2000 testing signals for each graph, generated in
the same way as the training signals. We further consider two differ-
ent sizes for the training data: the training set in the first one consists
of M = 400 signals per graph, while in the second one it consists
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Fig. 2. Comparison of multi-graphs learning, with SGWT and
single-graph learning in terms of SNR in the synthetic data.

of M = 1000 signals per graph. We compare the approximation
performance of our algorithm to that obtained with (i) the spectral
graph wavelet transform (SGWT) [4] and (ii) a polynomial graph
dictionary, learned in each graph separately [7]. In Fig. 2, we plot
the signal-to-approximation noise ratio (SNR) in dB, for different
sparsity levels. The SNR for each sparsity level is the average over
the three graphs. We observe that learning on multiple graphs can
significantly improve the SNR with respect to both the SGWT and
dictionaries learnt on different graphs independently. In particular,
the results indicate that jointly learning a dictionary is more stable
with respect to the size of the training set, and it can be more effi-
cient than learning independently in each graph, especially when the
training set is quite small (M = 400). In this case, the information
obtained from the different graphs compensates for the lack of train-
ing signals in each graph separately and can be combined in order to
learn the true dictionary.

4. SPARSE REPRESENTATION OF TRAFFIC DATA

In this subsection, we illustrate the performance of our algorithm
in the representation of localized graph signals related to the traffic
information in different counties in the state of California. In partic-
ular, we consider the daily bottlenecks in San Francisco, Alameda,
and Santa Barbara counties between January 2007 and August
2014. A bottleneck could be any location where there is a persis-
tent drop in speed, such as merges, large on-ramps, and incidents.
The data are part of the Caltrans Performance Measurement System
(PeMS) dataset that provides traffic information throughout all ma-
jor metropolitan areas of California [21].1 For each of the counties
we design a graph whose nodes consist of N = 75, N = 559,
and N = 62 detector stations respectively where bottlenecks were
identified over the period under consideration. We have thus in total
three different graphs, and each of them is designed by connecting
stations when the distance between them is smaller than a threshold
of θ = 0.04. For two stations A,B, the distance dAB is set to be the
Euclidean distance of the GPS coordinates of the stations and the
edge weights are computed using the exponential kernels such that
WAB = e−dAB . The signal on the graph is the duration in minutes

1The data are publicly available at http://pems.dot.ca.gov.
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Fig. 3. Comparison of multi-graphs learning, with SGWT and
single-graph learning in terms of SNR in the traffic delay dataset
for three different counties.

of bottlenecks for each specific day. We remove the signal instances
that no daily bottleneck was identified, and for computational is-
sues, we normalize each signal to a unit norm. The final number
of signals is 2766, 2772, and 894 for San Francisco (G1), Alameda
(G2), and Santa Barbara (G3) respectively. For each graph, we use
half of the signals for jointly training a polynomial graph dictionary
and the rest for testing the performance of the learned dictionary. In
our experiments, we fix the maximum degree of the polynomial to
K = 15 and we learn a dictionary with S = 3.

In Fig. 3, we illustrate the sparse approximation performance
of our dictionary representation by studying the reconstruction per-
formance in SNR on the set of testing signals for different sparsity
levels. The performance is compared to that obtained by learning
separately a dictionary on each graph [7], and the one obtained by
the sparse decomposition in the graph wavelet dictionary [4]. We
observe that multi-graph learning improves significantly the perfor-
mance in comparison to SGWT. Moreover, it outperforms the single-
graph learning algorithm in all the graphs. In the latter case however,
the gain is more evident when representing signals from the Santa
Barbara graph G3. In this case, jointly learning a dictionary compen-
sates for the relatively small number of available training signals for
this graph in comparison to the other two graphs.

5. CONCLUSIONS

In this paper, we have proposed an algorithm for learning dictio-
naries to sparsely represent graph signals that share some common
spectral characteristics, but live on different weighted graphs. These
characteristics are reflected in a common dictionary structure that
is constructed to be a polynomial function of the graph Laplacian
matrix, and the coefficients of the polynomials are jointly learned
from all graph signals on all graph instances. Experimental results
show the effectiveness of our dictionary learning method in sparse
representation of graph signals. Due to its polynomial construction,
our dictionary is also independent from the actual graph topologies,
which surely provide important benefits in terms of reduced com-
plexity and increased flexibility in practical learning and processing
methods for signal on graphs.
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