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ABSTRACT

This paper introduces a formal definition of continuity and generalizes
an existing notion of stability for node centrality measures in weighted
graphs. It is shown that the frequently used measures of degree, closeness
and eigenvector centrality are stable and continuous whereas betweenness
centrality is neither. Numerical experiments in synthetic and real-world
networks show that both stability and continuity are desirable in practice
since they imply different levels of robustness in the presence of noisy
data. In particular, a stable alternative of betweenness centrality is shown
to exhibit resilience against noise while preserving its notion of centrality.

Index Terms— Networks, graphs, centrality, continuity, stability.

1. INTRODUCTION

In any graph or network, the topology determines an influence structure
among the nodes or agents. Peripheral nodes have limited impact on the
dynamics of the network whereas central nodes have a major effect on the
behavior of the whole graph, e.g. migration in biological networks [1].
Moreover, recognizing the most influential nodes in a network helps in
designing optimal ways to influence it, e.g. attack vulnerability of net-
works [2]. Node centrality measures are tools designed to identify such
important agents. However, node importance is a rather vague concept
and can be interpreted in various ways, giving rise to multiple coexisting
centrality measures, the most common being degree [3,4], closeness [5,6],
eigenvector [7], and betweenness [8] centrality.

The ability of a centrality measure to be robust to noise in the network
data is of practical importance. Stability has been utilized to compare
centrality measures in the past [9–11]. In these papers, an empirical ap-
proach was followed by comparing stability indicators measured in both
random and real-world networks for different centrality measures. How-
ever, no formal theory was developed explaining the different behaviors
among measures. [12] represents the first attempt towards formalizing the
stability of centrality measures in networks, where betweenness centrality
was shown to be unstable and a stable alternative was proposed.

Our first contribution is the generalization of this notion of stability
from complete networks to arbitrary directed graphs. We then show that
degree, closeness, and eigenvector centrality are stable measures (Sec-
tion 3). Moreover, we introduce the concept of continuity as a milder
requirement for robustness and analyze the continuity of frequently used
centrality measures (Section 4). Finally, through numerical experiments
in synthetic and real-word networks, we illustrate how stability and con-
tinuity are correlated with practical robustness indicators and show that
the alternative definition of betweenness centrality behaves better than the
standard one while preserving a similar notion of centrality (Section 5).

The proofs of Propositions 1 to 8 can be found in [13].

2. PRELIMINARIES

We define a directed graph or network G = (V,E,W ) as a triplet formed
by a finite set of n nodes or vertices V , a set of directed edges E ⇢
V ⇥ V where (x, y) 2 E represents an edge from x 2 V to y 2 V ,
and a set of positive weights W : E ! R++ defined on each edge. The
weights can be associated to similarities between nodes, i.e. the higher
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the weight the more similar the nodes are, or dissimilarities, depending
on the application. The graphs considered here do not contain self-loops,
i.e., (x, x) 62 E for all x 2 V . For any given sets V and E, denote
by G(V,E) the space of all graphs with V as node set and E as edge set.
An alternative representation of a graph is through its adjacency matrix
A 2 Rn⇥n. If there exists an edge from node i to node j, then Aij takes
the value of the corresponding weight. Otherwise, Aij is null.

Given a graph (V,E,W ) and x, x0 2 V , a path P (x, x0) which starts
at x and finishes at x0 is an ordered sequence of nodes, P (x, x0) = [x =
x0, x1, . . . , xl = x0], such that ei = (xi, xi+1) 2 E for i = 0, . . . , l� 1.
Specifically when W is associated to dissimilarities, we define the length
of a given path as the sum of the weights encountered when traversing its
links in order. We define the shortest path function sG : V ⇥ V ! R+

where the shortest path length sG(x, x
0) between nodes x, x0 2 V is

sG(x, x
0) := min

P (x,x0)

l�1X

i=0

W (xi, xi+1). (1)

3. NODE CENTRALITY AND STABILITY

Node centrality is a measure of the importance of a node given its location
within a graph. More precisely, given a graph (V,E,W ), a centrality mea-
sure C : V ! R+ assigns a nonnegative centrality value to every node
such that the higher the value the more central the node is. Ideally, this
detection should be invariant to small perturbations in the edge weights.

To formalize this notion of robustness against perturbations, we define
the metric d(V,E) : G(V,E) ⇥G(V,E) ! R+ on the space of graphs G(V,E)

containing V as node set and E as edge set, as follows

d(V,E)(G,H) :=
X

e2E

|W (e)�W 0(e)| =
X

i,j

|Aij �A0
ij |, (2)

where G = (V,E,W ) and H = (V,E,W 0), and have A and A0 as
adjacency matrices, respectively. d(V,E) is a well-defined metric since it
is the `1 distance between two vectors obtained by stacking the values in
W and W 0. This metric enables the following definition of stability.

Definition 1 A centrality measure C is stable if, for every vertex set V ,

edge set E and any two graphs G,H 2 G(V,E),

���CG(x)� CH(x)
���  KG d(V,E)(G,H), (3)

for every x 2 V , where KG is a constant for every graph G, CG(x) is

the centrality value of node x in graph G and similarly for H .

The above definition states that a centrality measure is stable if the
difference in centrality values for a given node in two different graphs
is bounded by a constant KG times the distance between these graphs.
Definition 1 extends the one in [12] from complete networks to arbitrary
directed graphs. The constant KG depends on the whole graph G, as
opposed to just its size [12], and must be valid for every graph H . In
particular, if H is a perturbed version of G, any stable centrality measure
ensures that the change in centrality due to this perturbation is bounded.
This generates a robust measure in the presence of noise as we illustrate
through examples in Section 5. In the following sections we analyze the
stability of several centrality measures.
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3.1. Degree centrality
Degree centrality is a local measure of the importance of a node within
a graph. In directed graphs (V,E,W ), degree centrality of a node x is
unfolded into two different measures, out-degree COD and in-degree CID

centrality, computed as

COD(x) :=
X

x0|(x,x0)2E

W (x, x0), CID(x) :=
X

x0|(x0,x)2E

W (x0, x). (4)

The out-degree centrality of x is given by the sum of the weights of the
edges that originate in x whereas the in-degree centrality is given by the
sum of the weights of the edges that finish in x. For undirected graphs,
both notions coincide and we call them degree centrality CD . Although
the degree centrality measure has a number of limitations related to its
locality [14], it is stable as we state next.

Proposition 1 The degree CD , out-degree COD and in-degree CID cen-

tralities in (4) are stable as defined in Definition 1 with KG = 1.

The degree centrality measure is applied to similarity graphs. In this
way, a high degree centrality value of a given node means that this node
has a large number of neighbors and is closely connected to them. A
consequence of Proposition 1 is the limited effect that a perturbation in
the weights of a graph has on the centrality values; see Section 5.

3.2. Closeness centrality
Closeness is a relevant centrality measure when we are interested in how
fast information can spread from one node to every other node in a net-
work. A common definition of closeness centrality is the one in [5] where
the centrality CC(x) of a node x in a graph G = (V,E,W ) is defined as
the inverse of the sum of the shortest path lengths from this node to every
other node in the graph. However, as done in [15], we will work with the
decentrality version C̄C , where the lower the value the more central the
node,

CC(x) :=

 
X

x02V

sG(x, x
0)

!�1

, C̄C(x) :=
X

x02V

sG(x, x
0). (5)

Since we are ultimately interested in the centrality ranking being impervi-
ous to perturbations, it is immediate that the ranking stability of CC and of
C̄C are equivalent since they are related by a strictly decreasing function.
In the following proposition, we show stability of closeness decentrality.

Proposition 2 The closeness decentrality measure C̄C in (5) is stable as

defined in Definition 1 with KG = n.

For (5) to make sense, the weights in W must represent dissimilarities
between the nodes. Some alternative definitions of closeness centrality
exist [16, 17] including that in [6] where the measure in (5) is normalized
by n � 1. However, since normalization constants can be absorbed into
KG, stability does not depend on the appearance of normalization terms.

3.3. Betweenness centrality
Centrality can be interpreted as the possibility of a node to control the
communication or the optimal flow within a graph. Betweenness central-
ity takes this position by giving higher centrality values to nodes that fall
within the shortest path of many pairs of nodes. Formally, if denote by
�x0x00 the number of shortest paths from x0 to x00 and by �x0x00(x) the
number of these shortest paths that go through node x, then the between-
ness centrality CB(x) for given node x is defined as [8]

CB(x) :=
X

x0,x002V
x0 6=x 6=x00

�x0x00(x)
�x0x00

. (6)

In (6), the betweenness centrality value of node x is computed by sequen-
tially looking at the shortest paths between any two nodes distinct from
x and summing the proportion of shortest paths that contain node x. De-
spite its use in the study of technological [18] and social [19] networks,
betweenness centrality is not stable.

Proposition 3 ([12]) The betweenness centrality measure CB in (6) is

not stable in the sense of Definition 1.

As was the case for CC , betweenness centrality should be applied to
dissimilarity graphs. The instability of the betweenness centrality measure
entails an undesirable behavior when applied to synthetic and real-world
networks as shown in Section 5.

3.4. Eigenvector centrality
The eigenvector centrality CE of a node does not depend on the number of
neighbors but rather on how important its neighbors are. The importance
of its neighbors in turn depends on how important their neighbors are, and
so on. This recurrence relation translates into an eigenvector equation in
terms of the adjacency matrix A of the graph being studied [7]

�CE = ACE , (7)

where CE = (CE(x1), . . . , CE(xn))
T . The solution of (7) is not

uniquely determined, since every pair (�, CE) of eigenvalues and eigen-
vectors solves the equation. However, for undirected and connected
graphs the Perron-Frobenius Theorem [20] ensures that the eigenvector
corresponding to the maximal eigenvalue contains all positive compo-
nents. Thus, CE in (7) is defined as the normalized dominant eigenvector
of A. Eigenvector centrality is a stable measure as the following proposi-
tion shows.

Proposition 4 The eigenvector centrality measure CE in (7) is stable as

defined in Definition 1 with KG = 4/(�n ��n�1) where �n � . . . � �1

are the eigenvalues of the adjacency matrix of G.

The eigenvector centrality measure is applied to similarity graphs. In
contrast to the cases for degree and closeness centrality, KG for eigenvec-
tor centrality depends on the weights of the graph rather than just its size.
This difference does not impact the practical implementation of eigenvec-
tor centrality as we see in Section 5.

3.5. Stable betweenness centrality
In [12], the stable betweenness centrality measure CSB was introduced
as a stable alternative to the traditional betweenness centrality. Given an
arbitrary graph G = (V,E,W ) and a node x 2 V , define a new graph
Gx = (V x, Ex,W x) with V x = V \{x}, Ex = E \{(x0, x00) |x0 =
x or x00 = x}, and W x = W |Ex . I.e., the graph Gx is constructed by
deleting from G the node x and every edge directed to or from it. The
stable betweenness centrality CSB(x) of any node x 2 V is given by

CSB(x) :=
X

x0,x002V
x0 6=x 6=x00

sGx(x0, x00)� sG(x
0, x00). (8)

Measure CSB quantifies the centrality of a given node x by the change in
the length of shortest paths once this node is removed. This means that
the centrality of a node depends on the quality of the best alternative. In
contrast to the traditional centrality measure, CSB is stable.

Proposition 5 ([12]) The stable betweenness centrality measure CSB in

(8) is stable as defined in Definition 1 with KG = 2n2
.

As was the case for CB , definition (8) should be applied to graphs
where the weights represent dissimilarities between nodes. In practice,
CSB presents a more robust behavior than CB ; see Section 5.
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Fig. 1: Comparison of stability indicators for all centrality measures: degree (green circle), closeness (purple right triangle), betweenness (orange
upwards triangle), eigenvector (yellow left triangle), and stable betweenness (cyan downwards triangle). (a) Mean of the maximum change in random
networks. (b) Probability that the maximum change exceeds 5 positions in random networks. (c) Histogram of the maximum change recorded when
perturbing random networks with 150 nodes. (d) Probability that the top 5 ranking remains unchanged when perturbing a random network. (e) Probability
that the maximum change exceeds 3 positions in GI . (f) Average change in ranking for degree (circles), degree squared (squares) and floor degree
(diamonds) centrality measures under two types of noise: small (blue) and large perturbations (red).

4. CONTINUITY OF CENTRALITY MEASURES

We define a continuous centrality measure as one in which the centrality
values of every node in a given graph are a continuous function of the
weights in the edges of this graph.

Definition 2 Let G = (V,E,W ) be an arbitrary graph with adjacency

matrix A. For every matrix B such that Bij = 0 if Aij = 0 and B +
A � 0 element-wise, define the graph H = (V,E,W 0) whose adjacency

matrix is A + B. Then, a centrality measure C is continuous if for every

node x 2 V ,

CH(x) ! CG(x) as ||B||2 ! 0, (9)
where CG(x) is the centrality of x in graph G and similarly for H .

In the above definition, matrix B can be interpreted as a perturbation
defined on the edges of graph G. A continuous centrality measure en-
sures that as this perturbation vanishes, the centrality values tend to those
in graph G. Continuity is a weaker notion than stability since the latter
implies the former as we show next.

Proposition 6 If a centrality measure C is stable as in Definition 1 then

it is continuous as in Definition 2.

As stated in Section 3, a centrality measure is a function of a graph
that assigns a nonnegative real number to each node. This definition en-
ables the existence of a wide variety of measures. In particular, centrality
measures which are continuous but not stable.

Proposition 7 If a centrality measure C is continuous as in Definition 2

then it need not be stable as in Definition 1.

Proposition 6 guarantees that degree, closeness, eigenvector and sta-
ble betweenness centrality are continuous centrality measures. Proposi-
tion 7 leaves open the question of whether betweenness centrality is con-
tinuous or not. The result below shows that it is not.

Proposition 8 The betweenness centrality measure CB in (6) is not con-

tinuous as defined in Definition 2.

Being not only unstable but discontinuous further hinders practical
applicability of CB , making CSB an appealing alternative as we illustrate
in the next section.

5. NUMERICAL EXPERIMENTS

Stability and continuity regulate the behavior of centrality measures in the
presence of noise. We empirically validate three facts: betweenness cen-
trality is fundamentally different from the other measures (Section 5.1),
continuity and stability encode different robustness properties (Section
5.2), and the stable betweenness alternative CSB retains the same cen-
trality notion as the original CB (Section 5.3).

For a given node set V of size n � 10, we define a random network
as one where an undirected edge (x, x0) belongs to E with probability
q = 10/n. The weight of this edge is randomly picked from a uniform
distribution in [0.5, 1.5]. We consider these weights to be indication of
dissimilarities. Notice that the centrality rankings obtained by applying
a centrality measure based on dissimilarities – e.g., closeness – and one
based on similarities – e.g., degree – on the same graph are not compara-
ble. Thus, for every random graph we generate a similarity based graph
with the same nodes and edges but where the weights are computed as 2
minus the edges in the original graph, hence also contained in [0.5, 1.5].

As real-world data, we use a network that records interactions be-
tween sectors of the U.S. economy [21]. More precisely, the economic
network GI = (VI , EI ,WI), contains as nodes the 61 industrial sectors
of the economy as defined by the North American Industry Classification
System (NAICS). There exists an edge (x, x0) 2 EI if part of the output of
sector x is used as input to sector x0, and the weight WI(x, x

0) is given by
how much output of x – in dollars – is productive input of x0. We consider
WI(x, x

0) as a measure of similarity and use the inverse 1/WI(x, x
0) as

weights for the centrality measures that require dissimilarity graphs.

3389



Table 1: Average (upper triangular part) and maximum (lower triangular
part) variation of centrality ranking across different measures.

CD CC CB CE CSB CDS

CD 0 11.3 11.6 7.3 13.1 5.3
CC 43.8 0 10.3 9.9 12.7 8.5
CB 44.7 41.6 0 14.6 4.2 8.3
CE 30.0 38.9 55.5 0 16.6 8.5
CSB 51.1 51.3 18.9 61.5 0 10.0
CDS 22.3 34.4 34.3 33.7 42.4 0

5.1. Robustness indicators
We analyze the robustness of the centrality rankings when the random net-
works are perturbed. Given a network, we build a perturbed version of it
by modifying every edge weight with probability p. The perturbed edge
weights are multiplied by a uniform random number in [1 � �, 1 + �].
In this section we use type 1 noise where p1 = 1 and �1 = 0.01. For
the following experiment, we generate 100 random networks of n nodes,
where n varies from 10 to 200 in multiples of 10. We then generate a
perturbed version of each of these networks. For every network, we gen-
erate a centrality ranking of the nodes, i.e. we sort the nodes in decreasing
order of centrality value, and compare it with the centrality ranking of the
perturbed version of that network. We perform this comparison for the
rankings output by the five centrality measures in Section 3.

We begin by analyzing the maximum variation in ranking position ex-
perienced by a node when perturbing the network as a function of its size;
see Fig. 1a. E.g., for a network with 100 nodes, the perturbation generates
a maximum change of 1.8 positions on average for the CD ranking and
5.9 positions on average for the CB ranking. All measures experience an
approximately linear increase of the maximum change with the size of the
network, but the rate of increase is fastest for CB , generating big perfor-
mance differences between the measures for larger networks. We are also
interested in the distributions of these variations for the different centrality
measures. Thus, we plot the probability that the maximum change in the
ranking generated by a perturbation is greater than 5 positions in Fig. 1b.
E.g., for over 90% of the networks of 180 nodes, the betweenness central-
ity ranking undergoes a variation greater than 5 positions when perturbed
while this percent is smaller than 10% for the other measures. To facilitate
the understanding of Figs. 1a and 1b, in Fig. 1c we present the histogram
of the maximum change found in the rankings when perturbing a network
for the particular case of networks with 150 nodes for all measures. The
mean of these histograms correspond to the markers of the same color for
networks with 150 nodes in Fig. 1a. To relate the histogram with Fig.
1b, notice that only the orange histogram has a considerable portion of its
weight for changes of 6 positions or more, translating into a big difference
in probabilities between the orange marker and the rest in Fig. 1b. Having
a longer tail, the silhouette of the orange CB histogram is essentially dif-
ferent from the rest. E.g., for one of the studied networks, the CB ranking
presents a change of 19 positions whereas the largest variation for all other
measures combined is of 8 positions.

Another indication of robustness is the position where the first change
in the ranking occurs. In Fig. 1d, we plot the probability that the top 5
nodes in the ranking retain their positions after perturbing the network.
Observe that there is no clear trend with the size of the network but prob-
abilities oscillate around different values for different centrality measures.
In this way, we can state that for around 75% to 95% of the networks
there is no change in the top 5 centrality ranking for all measures except
for betweenness centrality where this percentage falls to 60% on average.

The same is true for a symmetrized version of the economic network
GI . In this case, as opposed to the random networks, the network size is
fixed. Thus, we analyze performance as a function of the magnitude of
the perturbation. A perturbation magnitude of � implies that every weight
in the network is multiplied by a random number in [1 � �, 1 + �]. For
every perturbation level, we generate 100 perturbed networks. In Fig. 1e,
we plot the probability of having a change of more than 3 positions in the
ranking for varying perturbation levels. As expected due to its instability,
this probability is consistently highest for CSB , and the difference with

Table 2: Comparison of the centrality rankings for the economic network
GI . CB and CSB output the most similar rankings.

Rk. CB CSB CC COD CID

1 Real estate Prof. Serv. Prof. Serv. Prof. Serv. Food
2 Construction Real Estate Oil & gas Real Estate Real Estate
3 Prof. Serv. Construction Petroleum Oil & gas Petroleum

other measures is maximized for perturbation of � = 0.02 and smaller.

5.2. Effects of continuity and stability
Given that betweenness centrality is neither continuous nor stable and the
rest of the measures analyzed in Section 3 are both, it is unclear the lack
of which property is responsible for the low robustness of betweenness
centrality. In order to answer this question, we introduce the following
two variants of degree centrality – degree squared CDS and floor degree
CFD – defined as follows for every node x 2 V in a graph (V,E,W )

CDS(x) :=
X

x0|(x,x0)2E

�
W (x, x0)

�2
, CFD(x) :=

X

x0|(x,x0)2E

floor
�
W (x, x0)

�
.

(10)
Degree centrality CD is both continuous and stable and it can be shown
[13] that CDS is continuous but not stable, and CFD is neither continuous
nor stable. In Fig. 1f we plot the average change in rankings, i.e. the
expected rank variation of any given node in the network, output by the
three measures when perturbing networks of different sizes. We do this
for two types of noise, type 1 as defined in Section 5.1 (plotted in blue)
and type 2 noise with parameters p2 = 0.1 and �2 = 0.1 (plotted in red).
As expected, degree centrality has the highest robustness followed by de-
gree squared and floor degree being the less robust of the three measures
under both types of noise. However, notice that for noise of small magni-
tude (type 1) the degree squared behaves more similar to degree centrality,
showing a robust behavior in the presence of noise. For larger magnitudes
of noise (type 2), degree squared centrality has a similar behavior to the
unstable floor degree centrality. This points towards the fact that con-
tinuity provides robustness under small perturbations while the stronger
concept of stability provides robustness for more general perturbations.

5.3. Ranking similarity across measures
Finally, we compare the centrality rankings across different measures. In
order to do this, we pick 100 random networks of size 100 nodes and com-
pute the average and maximum change for a pair of rankings output by
different measures; see Table 1. E.g., the mean average ranking variation
of nodes ranked by the degree CD and the eigenvector CE centralities is
7.3 positions. Moreover, the mean maximum variation between two given
rankings output by the betweenness CB and the closeness CC centrality
is 41.6 positions. Notice that the smallest variations – both in average and
maximum – are achieved when comparing the rankings of the between-
ness CB and the stable betweenness CSB centrality measures. This is
empirical proof that both measures encode a similar centrality concept.
Further observe that the variations between these two rankings are even
smaller than the ones between degree CD and squared degree CDS cen-
trality, two measures with closely related definitions [cf. (4) and (10)].

To complete the analysis, we use the economic network GI to further
illustrate the resemblance between CB and CSB . In Table 2 we inform the
three most central sectors of the economy as given by different centrality
measures. The ranking output by stable betweenness centrality CSB is the
most similar to CB since both measures share the top 3 economic sectors.

6. CONCLUSION
Stability and continuity, as formal characterizations of the robustness of
centrality measures, were introduced. The most frequently used centrality
measures were shown to be stable and continuous with the exception of
betweenness centrality. We illustrated the robustness implications of sta-
bility and continuity in noisy random and real-world networks. Finally,
we showed that the alternative stable version of betweenness centrality
carries a similar centrality notion to the original one.
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