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ABSTRACT

In this paper, we consider the problem of social learning in a
network of agents where the agents make decisions onK hypotheses
sequentially and broadcast their decisions to others. Each agent in
the system has a private observation that is generated by one of the
hypotheses. All the observations are independently generated from
the same hypothesis. We study a setting where the agents randomly
choose to make decisions prudently or non-prudently. A prudent
decision is based on the private observation of the agent and all
the previous decisions, whereas a non-prudent decision relies only
on the private observation of the agent. We present a Bayesian
learning method for the agents that exploits the information from
other decisions. We analyze the asymptotical property of this
system. A proof is presented that with the proposed decision policy,
the posterior probability of the true hypothesis converges to one in
probability. Simulation results are also provided.

Index Terms— social learning, Bayesian learning, prudent
agents, non-prudent agents, random behavior

1. INTRODUCTION

In this paper, we study social learning in presence of random
behavior. The addressed system is represented by a network of
agents with line topology. Thus, we refer to the network as a linear
network. Every agent receives an independent private observation
generated by a time invariant true hypothesis. They make decisions
sequentially one at a time in a predefined order. At every time
instant, one agent chooses one of the K hypotheses, i.e., Hk,
where k ∈ {1, 2, · · · ,K}, and broadcasts the decision to all its
successors. Each agent uses the Bayes’ rule to formulate its belief
in the hypotheses as a posterior distribution conditioned on the
previously made decisions and on its private observation.

In recent years, various issues of social learning have been
widely studied including the one that addresses the problems of
modeling the interaction of agents in social networks. In some of
these networks, the agents do not reveal their private observations
to others. Instead, they only share their decisions [1]. After
receiving the decisions, one agent can exploit the information in
these decisions by using either non-Bayesian [2, 3] or Bayesian
approaches [4, 5, 6, 7]. In this work, our study is within the realm
of Bayesian learning. Some works on this issue can be found
in [1, 8], where the interest is the study of herd behavior and
information cascades. We recall that herding represents a setting
where the agents blindly follow the previous decisions (i.e., they
ignore their private information). In [5, 9], the authors provide
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sufficient conditions for asymptotic learning in Bayesian social
learning systems. In [4], the problem of social learning with
Bayesian game is addressed. More recently, a gossip method for
Bayesian social learning is proposed in [10], with its convergence
being shown in [11]. In [12], a learning method that allows all
the agents to reach a consensus within finite number of iterations
is addressed. An overview of models and techniques for studying
social learning can be found in [7, 13].

In networks where agents employ Bayesian learning, if they
choose to ignore their private observations they may herd on the
wrong decision [1]. In [14], the author shows that the herding can
be delayed if some of the agents behave benevolently. Benevolent
behavior is defined as the behavior of an agent which makes its
decision by optimizing the welfare reward of the society of agents. In
that system, if the public belief is within certain region, the agent will
reveal its full observation to others; otherwise it makes a decision by
simply maximizing its personal utility. In [15], we propose a random
decision making policy with which the herd behavior can be avoided.

Here, we address a different type of randomness to avoid
herding. Namely, we introduce a decision making policy where each
agent randomly chooses to behave prudently or non-prudently. In the
former case, an agent decides based on its private observation and all
the previous decisions in the network to maximize the expected value
of its personal utility. In the latter case, an agent does the same but by
using its private observations only. We present a Bayesian learning
method for the agents to formulate beliefs in the hypotheses from the
decision history and the private observations. We show that due to
the presence of the non-prudent agents, herding cannot happen. We
also show that the posterior probability of the true hypothesis will
converge to one as the number of agents goes to infinity.

The paper is organized as follows. In the next section we
describe the models of the sequential system and explain the social
learning process. In Section 3, we present the proposed Bayesian
learning method. The analysis of the convergence of the social
belief and the probability of decision error are provided in Section 4.
Simulation results are given in Section 5, and concluding remarks in
Section 6.

2. PROBLEM STATEMENT

The process of social learning is illustrated in Fig. 1. We consider the
decision making problem in linear networks of agents An, n ∈ N+,
where each agentAn receives an independent private observation yn
that is generated according to one of the following K hypotheses:

Hk : yn ∼ φk(yn), (1)
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Fig. 1. Social learning in a sequential system. Agent A2 ignores the
decision of agent A1 and makes its decision non-prudently.

where k ∈ A = {1, 2, · · · ,K}. We assume that these K
distributions are known by all the agents. Every agent has a uniform
prior of the hypotheses, which means that p(Hk) = 1/K, ∀k ∈ A.

Each agent makes a once-in-life decision αn ∈ A about the
hypothesis that generated the observation. The agents make these
decisions in a predefined order. Once an agent makes a decision,
it broadcasts it to all the subsequent agents. Let α1:n−1 denote the
decision history from agent A1 to agent An−1. Then the agent An
can formulate its private belief on the hypothesis Hk, βk,n as the
posterior given by p(Hk|α1:n−1, yn). By using the Bayes’ rule, we
have that ∀n ∈ N+ and ∀k ∈ A,

βk,n = p(Hk|α1:n−1, yn) (2)

=
πk,n−1φk(yn)∑K
i=1 πi,n−1φi(yn)

, (3)

where we define πk,n to be the social belief in Hk as a posterior on
Hk conditioned on the decision history until An, i.e.,

πk,n = p(Hk|α1:n), ∀n ∈ N+, (4)

with πk,0 being initialized by the noninformative prior πk,0 = 1/K.
Here we remark that the social belief serves as the prior knowledge
for agent An before it has its private observation yn.

For any agentAn, after obtaining the private belief by the Bayes’
rule in (2), we assume that it has two ways to make its decision. It
can either choose to be non-prudent with probability ξ or be prudent
with probability 1− ξ. Throughout this paper, it is assumed that ξ is
known by all the agents. Let In be an indicator function that takes
value one if An is non-prudent and zero otherwise; then it follows
that p(In = 1) = ξ, ∀n. If An chooses to be non-prudent, it
makes its decision by using its private information only. To that end,
the agent An formulates the posterior on the hypotheses by yn, and
uses the maximum a posteriori (MAP) method to make its decision.
Mathematically, we have

αn = arg max
k

p (Hk|yn). (5)

Here we remark that the decision is made non-prudently because it
is independent to the decision history. Therefore, agent An provides
information to the following agents from its observations only.

By contrast, a prudent agent makes a decision by maximizing
its expected personal utility by using all the available information
in the network. In this paper, if An is prudent, it makes a decision
according to

αn = arg max
k

p (Hk|yn, α1:n−1). (6)

Thus, An chooses the hypothesis with the largest a posteriori
probability conditioned on its observation and the decisions of the

previous agents. If we set the reward of making a correct decision to
be one and zero otherwise, by using this policy the expected reward
is maximized.

In the following sections, we present the Bayesian learning
method for agents to update their beliefs. We show that if the
probability for each agent to be non-prudent is ξ > 0, then the social
belief converges to the true hypothesis in probability, i.e., if Hk is
the true hypothesis,

lim
n→∞

p(πk,n = 1) = 1, ∀k ∈ A. (7)

3. THE BAYESIAN LEARNING

In this system, once agent An makes its decision αn, all the
following agents should update the social belief by Bayes’ rule from
πk,n−1 to πk,n. However, when the decision αn is made, the
following agents do not know whether this decision is made by a
prudent or non-prudent agent. Therefore the hidden random variable
In should be marginalized out when updating the social belief. By
the definition in (4), given that αn = i, then ∀k, i ∈ A, the social
belief is updated according to

πk,n =
πk,n−1l

(i)
k,n∑K

j=1 πj,n−1l
(i)
j,n

, (8)

where the l(i)k,n is defined by

l
(i)
k,n = p(αn = i|α1:n−1,Hk) (9)

=

1∑
In=0

p(αn = i|α1:n−1,Hk, In)p(In). (10)

It denotes the probability of agentAn making decision αn = i given
the decision sequence up to αn−1 and the true state of nature being
Hk. As in [13], we refer to l(i)k,n as action likelihood in the following

sections. When n = 1, we set l(i)k,1 = p(α1 = i|Hk).
As is shown in (10), the action likelihood is obtained by using

the total probability theorem conditioned on two cases that In = 0
or In = 1. For both cases, the agents can obtain p(αn =
i|α1:n−1,Hk, In) by marginalizing out yn. Given the decision
making policy in (5) and In = 1, we have

p(αn = i|α1:n−1,Hk, In = 1) =

∫
yn∈Di

φk(yn)dyn, (11)

where the set Di = {yn|φi(yn) ≥ φj(yn), ∀j 6= i} is the decision
region for a non-prudent agent to decide αn = i. Similarly, if
In = 0, it follows that

p(αn = i|α1:n−1,Hk, In = 0) =

∫
yn∈Si

φk(yn)dyn, (12)

where the set Si = {yn|πi,n−1φi(yn) ≥ πj,n−1φj(yn),∀j 6= i} is
the decision region for a non-prudent agent to decide αn = i. Here
we remark that the sets Si are defined by both the data model and
the social belief πk,n−1.

We summarize the behavior of each agent An as follows: When
t < n, agentAn calculates the action likelihood by (10), and updates
its social belief by (8) after αt is made. When t = n, An first
randomly chooses one of the decision policies in (5) and (6), and
then it makes a decision according to the chosen policy. When t > n,
the agents become inactive.
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4. THE ANALYSIS

In this section, we analyze the asymptotic property of the proposed
Bayesian social learning system. By (4), πk,n(α1:n) = p(Hk|α1:n),
shows that πn is a function defined by the action sequence α1:n

(there is a deterministic mapping from α1:n to πn). Considering that
α1:n is random due to the randomness in the decision making and
the observations , πk,n is a discrete random process. Our main result
is about the expected value of the social belief denoted by Eπk,n,
which is presented by the following theorem:

Theorem 1 In the proposed system, let Hk be the true state of
nature. Then ∀k ∈ A, the expected value of the social belief in
Hk converges to one, i.e.,

lim
n→∞

Eπk,n = 1. (13)

Proof : The proof is in the appendix. There, we first prove that the
Eπk,n ≥ Eπk,n−1. We then show that Eπk,n − Eπk,n−1 = 0 if
and only if Eπk,n = 1. 2

In the following analysis, let Hk be the true hypothesis. Then
by Theorem 1, we immediately get that the social belief in the true
hypothesis will converge to one in probability, which is given by the
(7). Furthermore, considering that the prudent agents use the social
belief as the prior for formulating the private belief, then we have
that its private belief in the true hypothesis Hk also converges to
one, given by

lim
n→∞

p(βk,n = 1) = 1. (14)

By the decision rule of the prudent agents in (6), the probability for
a prudent agent making a correct decision converges to one, i.e.,

lim
n→∞

p(αn = k|In = 0) = 1. (15)

Therefore, as n goes to infinity, the probability for an agent to make
the correct decision is given by

lim
n→∞

p(αn = k) = (1− ξ) + bkξ, (16)

where bk = p(αn = k|Hk, In = 1) can be obtained by (11),
and ξ is the probability that an agent in the network is non-prudent.
Here we remark that this limit becomes smaller when ξ becomes
larger. We also note that if ξ = 0, the system becomes identical to
the systems in [1]. There, it is shown that the above asymptotical
performances may not be achieved because of the herd behavior of
the agents.

5. SIMULATIONS

In this section, we present simulation results on the evolution of
social beliefs and the probability for right decisions. We also provide
some numerical comparisons between different values of ξ.

In the experiment, the data of the kth hypothesis were generated
by

Hk : yn ∼ B(m, pk), (17)

where B(m, p) represents a binomial distribution parameterized by
m and pk. We validated the analytical result of the expected social
belief by Monte Carlo simulations, which were conducted with
2,000 trials. In each trial, we set the number of agents to be N =
1, 000, and they observed data generated from the data model in (17)
and parameterized by m = 6, [p1, p2, p3, p4] = [0.5, 0.6, 0.7, 0.4].

We tested the system with values ξ = 0, ξ = 0.02, ξ = 0.05
and ξ = 0.1. The private signals of the agents were generated
according to H1. When ξ = 0, all the agents were prudent. Then
[1] shows that there is a positive probability that the agents herd
on a wrong hypothesis. Once this herding starts, the social belief
becomes unchanged and information cascade occurs.
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Fig. 2. The convergence of social beliefs with different ξs, where the
agents get observations from the binomial data model.

We show the results of the proposed method in Fig. 2. On the
abscissa, we plotted the agent index and on the ordinate the estimate
of the expected social belief, which was given by the average social
belief from all the 2,000 trials. From the figure, we see that the
expected social beliefs kept increasing when ξ > 0, whereas it
leveled off when ξ = 0 because of the herd behavior. With all the ξs
which are greater than zero, it can be expected that Eπ1,n converges
to one if more and more agents are present in the network. We also
observe that a larger ξ resulted in a larger convergence speed of the
expected social belief.
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Fig. 3. The proportion of agents making the correct decision with a
binomial data model.

Another performance metric of interest is the probability of
correct decision. As we showed in (16), the limit of this probability
is smaller when ξ is greater. The results of this investigation are
plotted in Fig. 3, where the proportion of agents that made the
correct decision is displayed. As shown in the figure, with ξ > 0, the
probability for agents to make the correct decision keeps increasing.
By (16), p(αn = 1) converges to 0.9855, 0.9637, 0.9273 with ξ
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equal to 0.02, 0.05, and 0.1 respectively. The figure indicates that
larger ξs produce faster convergence rates.

Summarizing the results in the two figures, we conclude
the following: Although the asymptotical probability for correct
decision in a system with more non-prudent agents is smaller, future
decision making agents can benefit more from them because the
social belief has faster convergence to one.

6. CONCLUSIONS

In this paper we presented a Bayesian social learning system
constituted by two types of agents. In this system, each agent
randomly chooses to make its decision by using either a prudent
or non-prudent policy. A prudent agent makes its decision by
maximizing the expected personal utility based on all its available
information. By contrast, a non-prudent makes a decision based
on private observations only. We investigated a Bayeisan learning
method for the agents that exploits the information from the previous
decisions. In analyzing the system, we proved that the social belief
in the true hypothesis converges to one in probability as long as not
all the agents are prudent. We demonstrated the performance of the
system by Monte Carlo simulations. We proved the convergence of
the expected social belief and the probability of a correct decision.
We also discussed the trade-off between the proportion of non-
prudent agents in the network and the probability for correct decision
by simulations.

7. APPENDIX

Before proving the Theorem, we first prove a lemma, which clarifies
some properties of the proposed method.

Lemma 1 In the proposed system, let Hk denote the true state of
nature. If 0 < π1,n−1 < 1, and if ξ > 0, then we have that ∀i ∈ A,
and ∀α1:n−1 ∈ An−1

p(αn = i|α1:n−1,Hk = Hi) > p(αn = i|α1:n−1,Hk 6= Hi).
(18)

Proof : This lemma simply states that when a decision αn = i is
made, it is more likely that Hk = Hi than Hk 6= Hi. To that end,
by (10), we have that this statement can be shown by considering
two cases. Without loss of generality, we assume that αn = 1.

First by [1], if the decision αn = 1 is made by a prudent agent
and if 0 < π1,n−1 < 1, we have that when αn = 1, the social belief
in H1 is nondecreasing, i.e., π1,n(α1:n−1, 1) ≥ π1,n−1(α1:n−1).
Therefore from (8), this result implies that when αn = 1 , the
likelihood of Hk = H1 is greater or equal to that of Hk 6= H1.
Moreover, the equal sign holds when information cascade emerges
in the system.

Second, if the decision αn = 1 is made by a non-prudent agent,
we can show that the likelihood of Hk = H1 is strictly greater than
Hk 6= H1. Considering that the non-prudent decision is made by
using the information in yn only, then by (11), in the decision region
D1, φ1(yn) ≥ φj(yn), ∀j 6= 1. Thus, it follows that ∀j 6= 1,

p(αn = 1|α1:n−1,Hk = H1, In = 1) ≥
p(αn = 1|α1:n−1,Hk = Hj , In = 1). (19)

Noting that the equal sign could not hold for each of the remaining
K − 1 hypotheses, then we must have that

p(αn = 1|α1:n−1,Hk = H1, In = 1) >

p(αn = 1|α1:n−1,Hk 6= H1, In = 1). (20)

With the analysis of the two cases, by marginalizing In, we have that
(18) holds when ξ > 0. 2

Now, by using this lemma, we prove Theorem 1.
Proof of Theorem 1: Without loss of generality, we assume that

the true hypothesisHk = H1. Then we have that

Eπ1,n =
∑

α1:n∈An

π1,n p(α1:n)

=
∑

α1:n−1∈An−1

p(α1:n−1)

( ∑
αn∈A

p(αn|α1:n−1,H1)π1,n

)
.

(21)

Next we show that Eπs,n is nondecreasing. By (21), we can
write

Eπ1,n − Eπ1,n−1 =
∑

α1:n−1∈An−1

p(α1:n−1)∆(α1:n), (22)

where ∆(α1:n) is a function of the action sequence α1:n given by,

∆(α1:n) =
∑
αn∈A

p(αn|α1:n−1,H1)π1,n − π1,n−1. (23)

By (8), we can further expand ∆(α1:n) by

∆(α1:n) = π1,n−1

(
K∑
i=1

l
(i)
1,n∑K

j=1 πj,n−1l
(i)
j,n

l
(i)
1,n − 1

)
. (24)

Noting that
∑K
i=1 l

(i)
1,n = 1 and

∑K
i=1(

∑K
j=1 πj,n−1l

(i)
j,n) = 1,

∆(α1:n) can be reformulated as follows:

∆(α1:n) = π1,n−1

K∑
i=1

(l
(i)
1,n −

∑K
j=1 πj,n−1l

(i)
j,n)2∑K

j=1 πj,n−1l
(i)
j,n

, (25)

which shows that ∆(α1:n) ≥ 0. Because p(α1:n−1) ≥ 0,
∀α1:n−1 ∈ An−1, we have proved that the expected social belief
in H1 is nondecreasing. Noting that 0 ≤ Eπ1,n ≤ 1 is bounded,
then it must converge.

Next, we show that this limit is one. By the boundedness of
Eπ1,n, we have that the limit of (22) must be zero, i.e.,

lim
n→∞

(Eπ1,n − Eπ1,n−1) = 0, (26)

which implies that ∀α1:n−1 ∈ An−1,

lim
n→∞

p(α1:n−1)∆(α1:n−1) = 0. (27)

By Lemma 1, we have that if 0 < π1,n−1 < 1,

p(αn = 1|α1:n−1,Hk = H1) >

∑
j 6=1 πj,n−1l

(i)
j,n

1− π1,n−1
. (28)

Then it follows that (1−π1,n−1)l
(1)
1,n−

∑
j 6=1 πj,n−1l

(i)
j,n > 0, which

shows that (l
(1)
1,n −

∑K
j=1 πj,n−1l

(1)
j,n)2 > 0 unless π1,n−1 = 1 or

π1,n−1 = 0. Therefore, ∆(α1:n) = 0 if and only if π1,n−1 = 1 or
π1,n−1 = 0. By [1], the Bayesian learning cannot be totally wrong.
Namely, if H1 is true, the probability that π1,n−1 = 0 converges to
zero. Then from (27), we get that

lim
n→∞

∑
α1:n−1∈An−1

p(α1:n−1)(1− π1,n−1) = 0. (29)

Then by (21), we show that the limit Eπn is one, given by

lim
n→∞

Eπ1,n = 1. (30)

2
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