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ABSTRACT

We investigate the use of compactly supported kernels (CSKs) for

the kernel normalized least mean square (KNLMS) algorithm pro-

posed initially by Richard et al. in 2009. The use of CSKs yields

sparse kernelized input vectors, offering an opportunity for complex-

ity reduction. We propose a simple two-step method to compute the

kernelized input vectors efficiently. In the first step, it computes an

over-estimation of the support of the kernelized input vector based

on a certain ℓ1-ball. In the second step, it identifies the exact support

by detailed examinations based on an ℓ2-ball. Also, we employ the

identified support given by the second step for coherence construc-

tion. The proposed method reduces the amount of ℓ2-distance evalu-

ations, leading to the complexity reduction. The numerical examples

show that the proposed algorithm achieves significant complexity re-

duction.

Index Terms— Kernel learning, Gaussian kernel, Radial basis

function, Positive definite function, Compactly supported function.

1. INTRODUCTION

Gaussian kernel is one of the radial basis functions which depend on

the distance between two samples and does not depend on the direc-

tion. This particular property is one of the reasons for the popularity

of Gaussian kernel for approximating unknown functions. In the lit-

erature of kernel adaptive filtering (kernel online learning), the Gaus-

sian kernel has widely been employed [1–7]. From the computa-

tional aspects, the Gaussian kernel is not necessarily perfect because

many practical applications such as kernel ridge regression require

the inversion of the kernel matrix which is dense in the case of Gaus-

sian kernels. Compactly supported and positive definite functions

have been studied in statistics [8–12]. These functions have been

applied to scattered data approximation and surface reconstruction

as well as machine learning problems [13–17]. A remarkable ad-

vantage of the compactly supported and positive definite functions

is that the kernel matrix becomes sparse, which reduces the compu-

tational burden of kernel methods [17].

The kernel normalized least mean square (KNLMS) algorithm

[4] is one of the simplest examples of kernel adaptive filtering al-

gorithms. The algorithm is free from the computation of the ker-

nel matrix inversion since it projects the current estimate onto the

zero-instantaneous hyperplane in the Euclidean space. However, the

length of the kernelized input vector, which gives the normal vector

of the hyperplane, is the size of the dictionary, which implies that

the complexity for computing the kernelized input vector and the

projection increases linearly with the dictionary size.

In this paper, we focus on the sparseness of the kernelized in-

put vector for compactly supported kernels (CSKs) and propose an
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efficient KNLMS algorithm with CSKs. The support of the kernel-

ized input vector corresponds to those data points in the dictionary

which are contained by the ℓ2-ball centered at the current data; the

radius is determined by the support of the CSK employed. To avoid

computing the ℓ2 distances from the current data to all the dictio-

nary data, we propose a simple two-step method. In the first step,

it computes an over-estimate of the support based on the concentric

circumscribed ℓ1-ball of the ℓ2-ball. In the second step, it identi-

fies the exact support by computing the ℓ2 distances from the current

data to only those dictionary data which are contained by the ℓ1-ball.

Also, we employ the identified support given by the second step for

coherence construction. This proposed method reduces the amount

of ℓ2-distance evaluations drastically, leading to a substantial reduc-

tion of the computational loads. The numerical examples show that

the proposed algorithm achieves significant complexity reduction.

2. PRELIMINARIES

This section introduces the notation and the compactly supported

kernels [8, 9, 11].

2.1. Notation and the KNLMS Algorithm

Throughout this paper, let R, N, and N
∗ denote the sets of all

real numbers, nonnegative integers, and positive integers, respec-

tively. We denote by (·)T the transpose. Also we denote by ‖·‖1
and ‖·‖2 the ℓ1 norm and the ℓ2 norm, respectively, of vectors.

The task of kernel adaptive filtering is to estimate a nonlinear

function ψ : U → R in an online fashion with sequentially

arriving data (un, dn)n∈N
⊂ U × R, where U ⊂ R

L and R

are the input and output spaces, respectively, and n is the time

index. Let κ : U × U → R denote a positive definite ker-

nel. Let {κ (·,uj)}j∈J
be the dictionary indicated by the index

set Jn :=
{

j
(n)
1 , j

(n)
2 , · · · , j(n)

rn

}

⊂ {0, 1, · · · , n− 1} , where

rn ∈ N
∗ is the dictionary size. A kernel adaptive filter is then given

by

ϕn (u) =
∑

j∈Jn

h
(n)
j κ (u,uj) , u ∈ U , n ∈ N, (1)

where h
(n)
j ∈ R. An estimate of dn can be expressed in a vector

form as follows:

d̂n := ϕn (un) = h
T

nkn, (2)

where the ith components of hn ∈ R
rn and kn ∈ R

rn are given by

[hn]i := h
(n)

j
(n)
i

and [kn]i := κ
(

un,u
j
(n)
i

)

, respectively. Initialize

the dictionary index set J−1 := ∅ and the filter h0 := ∅. KNLMS

[4] designs the dictionary index set Jn based on the coherence cri-
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Table 1. Gaussian and compactly supported functions for L = 2,

ρ := ‖x− y‖2, α := 1/2σ2, and ρ̃ := ρ2/c2; (x)+ :=
max {x, 0} for x ∈ R.

Name Function

Gaussian ψG(ρ)=exp
(

−αρ2
)

Matérn’s CSK [8] ψMrt(ρ)=(1−ρ̃)2+
Wendland’s CSK [9] ψWnd(ρ)=(1−ρ̃)6+

(

35ρ̃2+18ρ̃+3
)

/3

Wu’s CSK [11] ψWu(ρ)=(1−ρ̃)4+
(

3ρ̃3+12ρ̃2+16ρ̃+4
)

/4

terion as follows:

Jn+1 :=

{

Jn ∪ {n} , if minj∈Jn
|κ (un,uj)| ≤ µ0,

Jn, otherwise,
(3)

where µ0 ∈ (0, 1) is the coherence threshold. If Jn+1 6= Jn, then

we let h
j
(n)
n

:= 0 and define augmented vectors h̃n := [hT

n, 0]
T ∈

R
rn+1 and k̃n := [kT

n, 1]
T ∈ R

rn+1 . Otherwise, we let h̃n := hn

and k̃n := kn. The update equation is given as:

hn+1 := h̃n + ηn
dn − h̃

T

nk̃n

k̃
T

nk̃n

k̃n, n ∈ N, (4)

where ηn ∈ [0, 2] is the step size.

2.2. Compactly Supported Kernels

The Gaussian kernel can be defined as [18, 19]

κG (x,y) := ψG (ρ) := exp

(−ρ2
2σ2

)

(5)

where σ > 0 is the kernel parameter and

ρ := ‖x− y‖2 (6)

denotes the Euclidean distance between x and y. This means that

the Gaussian kernel depends only on the distance of two samples,

but not on the direction of their difference vector. Such functions are

called radial, and its special case is compactly supported radial func-

tions, which we shall denote by ψC : R → R. A CSK can be defined

as κC (x,y) := ψC (ρ). Table 1 presents some known CSKs stud-

ied by Matérn [8], Wendland [9], and Wu [11] for the smoothness

parameter set to 2 with the cutoff parameter c > 0, which controls

the support region (see Fig. 1a). Fig. 1b shows the Gaussian kernel

for σ = 0.2 and the CSKs for c = 2σ(= 0.4). The functions pre-

sented in Table 1 are strictly positive over the range [0, c) and zero

over [c,∞).

3. PROPOSED ALGORITHM FOR COMPLEXITY

REDUCTION

Due to the compactness of the support of ψC , the kernelized input

vector kn becomes sparse with the use of an appropriately chosen

c; in other words, c controls the sparsity of kn. Without the sparse

structure, the complexity for obtaining kn and for updating hn is

linear in the dictionary size rn. However, under the sparseness, once

we know the support

supp (kn) :=
{

ι ∈ Jn | [kn]ι := κ (un,uι) 6= 0
}

=
{

ι ∈ Jn| ‖un − uι‖2 < c
}

, (7)

the complexity for the remaining computational tasks to obtain kn

and to update hn is linear in the support size. This is the core of the

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

ρ

ψ
(ρ
)

Gaussian kernel

Wendland (c = σ)

Wendland (c = 2σ)

Wendland (c = 3σ)

Wendland (c = 4σ)

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

ρ

ψ
(ρ
)

Gaussian kernel

Matérn

Wendland

Wu

(b)

Fig. 1. Compactly supported kernels and a Gaussian kernel.

complexity reduction.

3.1. Efficient Support Identification through Over-estimation

The support estimation is constructed by using an ℓ1-ball to reduce

the complexity in terms of multiplications. The computational re-

duction is based on the fact that the evaluation of the ℓ1 norm in-

volves no multiplications (only absolute value evaluations and ad-

ditions). The idea is to exclude, at the first step, (not all but) most

of the ‘off-support’ dictionary elements which locate out of the sup-

port of the ψC

(

‖ · −un‖2
)

. Because of this, the evaluations of the

Euclidean distance ‖un − uι‖2 can be saved for the ‘off-support’

dictionary elements.

An open ℓ1-ball centered at u ∈ R
L with radius γ > 0 is defined

as follows:

B1 (u, γ) :=
{

x ∈ R
L | ‖x− u‖1 < γ

}

. (8)

The proposed algorithm is composed of three stages.

Stage 1 : The support identification is accomplished by two steps.

Step 1 : Over-estimation based on ℓ1-ball

An over-estimate of supp (kn) is defined by

În :=
{

ι ∈ Jn | uι ∈ B1

(

un,
√
Lc

)}

⊃ supp (kn) .

(9)

Here, the inclusion holds because
√
L ‖x‖1 ≥ ‖x‖2 ,∀x ∈

R
L.
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Step 2 : Support identification based on ℓ2-ball

The open ℓ2-ball centered at u with radius γ > 0 is defined

as

B2 (u, γ) :=
{

x ∈ R
L | ‖x− u‖2 < γ

}

. (10)

Then, the support is identified under the inclusion in (9), as

supp (kn) =
{

ι ∈ În | uι ∈ B2 (un, c)
}

. (11)

Stage 2 : The dictionary is constructed on supp (kn) as follows:

Jn+1 :=

{

Jn ∪ {n} , if uι /∈ B2 (un, µ1c) ∀ι ∈ supp (kn) ,

Jn, otherwise,

(12)

where µ1 ∈ (0, 1) is the threshold. Note that the condition in

(12) can be checked only for the subset supp (kn) of Jn.

Stage 3 : The filter is updated by (4). Note here that the off-

support components are unchanged and therefore the com-

plexity for the update is determined by the support size, not

by the dictionary size.

The parameter µ1 of the proposed algorithm is closely related to

the µ0 of KNLMS in (3). In fact, setting

µ1 =
σ

c

√

2 ln
(

µ−1
0

)

, (13)

one can obtain the same dictionary as that of KNLMS. The proposed

algorithm is insensitive to the choice of µ1 within a range in which

the dictionary size is sufficiently large.

Example 1 To illustrate the proposed algorithm，we show a simple

example in Fig. 2. In Fig. 2a, the dictionary data are plotted by

rn = 200 dots. Note that those data are indicated by circles (rather

than dots) in B1

(

un,
√
2c
)

. In Fig. 2b, the data in B2 (un, c) are

indicated by filled ones.

Stage 1 :

Step 1. An over-estimate În is attained by taking the 12 circles

in B1

(

un,
√
2c
)

; see Fig. 2a.

Step 2. The supp (kn) is indicated by the 9 filled circles, out of

12, in B2 (un, c); see Fig. 2b.

Stage 2 :

There exists some dots in B2 (un, µ1c) (see Fig. 2b), and hence

Jn+1 = Jn.

Stage 3 :

By using the supp (kn) obtained, the proposed algorithm finally

updates the filter by (4).

In this case, 12 evaluations of ‖un − uι‖2 needs to be performed

to obtain kn, and (3) and (4) are computed only for the length-9

on-support subvector of kn.

3.2. Complexity of the Proposed Algorithms with CSK

The total number of multiplications and comparisons of the proposed

algorithm with Wendland’s CSK is (L+1)rn+(L+1)ŝn+14sn+2
where rn is the dictionary size, ŝn is the size of the over-estimated

support În and sn is the support size. The complexity of KNLMS

with Gaussian kernel is (L+ 6) rn + 3. The proposed algorithm is

more efficient than KNLMS when

ŝn <
5rn + 1

17
(≈ 0.29rn + 0.07 < 0.3rn) . (14)

The complexity of the algorithms is summarized in Table. 2.
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(a) Over-estimation of supp (kn) by B1

(

un,
√
2c
)

.

‖un − uι‖2 only

for the 12 circles ι ∈ În

is evaluated.

The dictionary construction and

the filter update are computed

only for the 9 filled circles.
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(
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√
2c
)

B2 (un, c)
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the support of kn

un

(b) Support identification and the dictionary construction.

Fig. 2. An illustration of the proposed algorithm.

4. NUMERICAL EXAMPLES

Computer simulations are conducted to verify the efficiency of the

proposed algorithm. We use the Gaussian kernel and the Wendland’s

CSK which is a popular family of CSK; see Table 1. In our exper-

iments, the other CSKs exhibited almost the same performance as

Wendland’s CSK, and thus we only show the results for Wendland’s

one. The three adaptive algorithms are compared: KNLMS [4] with

Gaussian (KNLMS-Gaussian), KNLMS with CSK (KNLMS-CSK),

and the proposed algorithm. The simulation settings are given as fol-

lows: L = 2, the output is generated as dn := ϕ (un) + vn, n ∈ N,

with

ϕ (x) :=

4
∑

j=1

h∗
j exp

(

−‖x− cj‖22 /2σ
∗
j

)

, (15)

where (h∗
1 , h

∗
2, h

∗
3, h

∗
4) = (1.5,−1.5,−0.5, 1.5), (σ∗

1 , σ
∗
2 , σ

∗
3 , σ

∗
4) =

(0.4, 1, 0.4, 0.8), c1 = [0.5, 0.5]T, c2 = [−0.5,−0.5]T, c3 =

[0.5,−0.5]T and c4 = [−0.5, 0.5]T. The input un ∈ (−3, 3)2

obeys the i.i.d. uniform distribution. The noise vn is additive white

Gaussian noise with SNR :=
E{ϕ2(un)}

E{v2
n} = 20dB. A normalized

Mean Squared Error (MSE) is defined as follows:

MSE :=
E
{

(

dn − hT

nkn

)2
}

E {d2n}
(16)

which is approximately computed in our experiments by taking an

arithmetic average over 300 independent trials. The step size for

each algorithm is ηn = 0.1, ∀n ∈ N. The parameter for KNLMS-
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Table 2. Computational complexity of the algorithms.

Algorithm Kernel Multiplication Addition Comparison

Gaussian (L+5) rn + 2 (L+1) rn − 1 rn + 1

KNLMS Matérn (L+5) rn + 2 (L+3) rn − 1

Wendland (L+12) rn + 2 (L+5) rn − 1 2rn + 1

Wu (L+14) rn + 2 (L+6) rn − 1

Matérn Lŝn+5sn+2 (2L− 1) rn+ (L− 1) ŝn+4sn−1

Proposed Wendland Lŝn+12sn+2 (2L− 1) rn+ (L− 1) ŝn+6sn−1 (L+ 1)rn+ŝn+2sn

Wu Lŝn+14sn+2 (2L− 1) rn+ (L− 1) ŝn+7sn−1
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the exact support size s̄n.
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Gaussian is set to σ = 0.2. The parameters for KNLMS-CSK and

the proposed algorithm are set to c = 0.8. We set µ0 = 0.5 for

KNLMS and KNLMS-CSK, and µ1 = 0.29 for the proposed algo-

rithm; the µ1 is determined automatically with (13).

In Fig. 3, the average value of the final dictionary size r̄3×104 =
439 for all algorithms. the average over-estimated support size ¯̂sn
and the average support size s̄n are plotted respectively by the green

and red curves. The average and maximum values of supp (kn)
were 29 and 31, respectively, and those for the over-estimated sup-

port were 36 and 38, respectively. The figure shows the efficiency

of the ℓ1-based over-estimation because ŝn − sn ≈ 3 ≪ rn ≈ 200
(see also Fig. 2).

Fig 4 shows the MSE learning curves. It can be seen that all

algorithms show comparable convergence performances. To see the

complexity for each algorithm, we plot the number of multiplications

and additions in Fig. 5. It can be seen that the number of multiplica-

tions of the proposed algorithm is smaller than the one of KNLMS;

the number of multiplications plus comparisons are smaller as well.
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Fig. 5. The complexity of the algorithms at each iteration.

Consequently, the proposed algorithm can significantly reduce the

complexity while keeping the estimation performance.

5. CONCLUSION

We presented an efficient KNLMS algorithm with the use of com-

pactly supported kernels. The proposed algorithm was composed of

three stages. In the first stage, the support of the kernelized input

vector was identified by two steps through its over-estimate based

on the circumscribed ℓ1-ball. In the second stage, the dictionary was

constructed based on the knowledge about the support identified in

the first stage. In the third stage, the filter was updated based on

the support information acquired in the first stage and the dictionary

constructed in the second stage. Overall, the complexity was reduced

significantly as demonstrated by the numerical examples.
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