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ABSTRACT

We propose a novel multikernel adaptive filtering algorithm based
on the iterative projections in the sum space of reproducing kernel
Hilbert spaces. We employ linear and Gaussian kernels, envisioning
an application to partially-linear-system identification/estimation.
The algorithm is derived by reformulating the hyperplane projection
along affine subspace (HYPASS) algorithm in the sum space. The
projection is computable by virtue of Minh’s theorem proved in
2010 as long as the input space has nonempty interior. Numerical
examples show the efficacy of the proposed algorithm.

Index Terms— reproducing kernel Hilbert space, multikernel
adaptive filtering, sum space, orthogonal projection

1. INTRODUCTION

Kernel adaptive filtering has attracted remarkable interests in sig-
nal processing, machine learning, and neural networks [1-12]. In its
early stage, the sparsification of the dictionary was one of the central
issues because the expansion length increases unlimitedly as time
goes by unlike the case of linear adaptive filters [13, 14]. The spar-
sification techniques can be classified into the growing and pruning
strategies. The growing strategy selectively adds a new datum into
the dictionary based on some novelty criterion such as (i) Platt’s cri-
terion [15], (ii) approximate linear dependency [2], and (iii) coher-
ence [8] etc. The pruning strategy removes obsolete data from the
dictionary, including (i) the simple truncation rule [1], (ii) the fixed
budget approaches [4,5,11,12], and (iii) the shrinkage approaches
based on ¢; regularization [16-20].

Recently, it has been shown that the use of multiple kernels
for online learning yields better performance than the conven-
tional single-kernel approaches [16,17,21-24]. Yukawa has pro-
posed multikernel adaptive filtering [16,17,22]. Its basic algorithm
named the multikernel normalized least mean square (MKNLMS)
algorithm is a simple extension of the kernel normalized least
mean square (KNLMS) algorithm proposed in [8]. Indeed, both
KNLMS and MKNLMS project the current estimate onto a zero-
instantaneous-error hyperplane in a Euclidean space (a parameter
space). The difference is the dimension of the space (the num-
ber of parameters). A vector in the Euclidean space for KNLMS
consists of expansion coefficients for a single kernel, while that
for MKNLMS consists of expansion coefficients for multiple ker-
nels. Tobar, Kung, and Mandic have proposed the multikernel least
mean square (MKLMS) algorithm [24] which is closely related to
MKNLMS but is applicable to ‘vector-valued’ functions. Pokharel,
Pincipe, and Seth have proposed the mixture kernel least mean
square formulation [21]. In this approach, individual nonlinear fil-
ters are computed by the LMS algorithm in multiple reproducing
kernel Hilbert spaces (RKHSs) simultaneously, and the weights of
the combination of the individual filters are learned also in online
fashion. Gao, Richard, Bermudez, and Huang have proposed the
convex combinations of kernel adaptive filters [23] which is related
to the mixture kernel least mean square approach.

*This work was partially supported by KDDI Foundation and JSPS
Grants-in-Aid (24760292). The author would like to thank Prof. Johan
A. K. Suykens and Dr. Philippe Dreesen for offering the Silverbox data set
used in the experiments. Contact Email: yukawa@elec keio.ac.jp.
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Let us turn our attention to partially linear models which have
been studied considerably in statistics over the last few decades [25].
A partially linear model is defined as a superposition of linear and
nonlinear (typically smooth) functions. For batch processing, a sig-
nificant amount of researches have been done under this model. In
particular, partially linear regression has been studied in automatic
control with the use of reproducing kernels in [26,27]. On the other
hand, adaptive signal processing under partially linear models would
still have plenty of room for investigation. (A convex combination
of linear and Gaussian kernels has been used in [28] for nonlinear
acoustic echo cancellation; the convex combination coefficients are
tuned manually.)

In this paper, we propose an efficient multikernel adaptive fil-
tering algorithm to estimate/track partially linear systems. The pro-
posed algorithm is based on the iterative projections in the sum space
of RKHSs associated with linear and Gaussian kernels.! The differ-
ence from the MKNLMS algorithm is that the projection is operated
in a functional space (the sum space) rather than a Euclidean space.
The algorithm is derived by reformulating the hyperplane projection
along affine subspace (HYPASS) algorithm [30] in the sum space.
Thanks to Minh’s theorem [31], we obtain a closed-form expression
of the inner product in the sum space under the practical assumption
that the input space has nonempty interior. This allows us to compute
the projection in the sum space. We also present a selective updat-
ing strategy to reduce the computational costs. Numerical examples
show the advantages of the proposed algorithm in performance and
complexity for adaptive estimation of the real-life nonlinear dynam-
ical system.

2. SUM SPACE MODEL

We denote by R and N the sets of all real numbers and nonnegative
integers, respectively. Vectors and matrices are denoted by lower-
case and upper-case letters in bold-face, respectively. The identity
matrix is denoted by I and the transposition of a vector/matrix is

denoted by (-)7. Let i/ C R be the input space which is as-

sumed to have nonempty interior, and R the output space.> We con-
sider a problem of estimating/tracking a nonlinear unknown function
1 : U — R by means of sequentially arriving input-output mea-
surements. We focus on the so-called partially linear case where
% is given as a superposition of linear and nonlinear smooth func-
tions [25-27]. The linear and Gaussian kernels are presented be-
low among many other cerebrated examples of reproducing kernel
[32,33].

1. Linear kernel: Given ¢ > 0,

kL(z,y) = z'y+ec zycl

A more general framework is available online [29].

2The interior assumption is required for deriving the proposed algorithm
through the sum-space formulation, but does not restrict its applicability.
Indeed, if ¢/ has no interior (or if, more in general, two RKHSs have common
elements other than the null vector), essentially the same algorithm can be
derived based on the Cartesian product of RKHSs [29].
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2. Gaussian kernel: Given o > 0,

2
T —
KG(CL‘,?J) ‘= exp <_w> , T,Y € u7

202

where |||/ denotes the Euclidean norm in R”.

We denote by Hi, and Hg the RKHSs, over the input space
U, associated with k1, and kg, respectively. The inner products in
Hu and Hg are denoted by (-, ), and (-, ), , respectively, and

the induced norms by ||-[|,,, and ||-[|,,, , respectively. The partially
linear system v is well modeled as an element of the sum space

HY :=Ho +He = {fu+ fo: fu € Ho, fo € Ha}.
Theorem 1 (Reproducing kernel of sum space H " [34]) If x; is

the reproducing kernel of the class H; with the norm H-||H7,, then

K = K1 + ko is the reproducing kernel of the class H* of all
Sunctions f = f1 + f2 with fi; € H;, and with the norm defined by

11 = min {Lf1l3, + 1 fall3e, | = Fi+ o, fi € M}
(D

The following theorem proved by Minh allows us to compute
the projection in the sum space H ™.

Theorem 2 ([31]) Let U C RE be any set with nonempty interior
and Hq the RKHS associated with a Gaussian kernel kg (x,y) for
an arbitrary o > 0 together with the input space U. Then, and
‘Ha does not contain any polynomial on U, including the nonzero
constant function.

The following corollary is obtained as a direct consequence of
Theorem 2.

Corollary 1 (Linear and Gaussian RKHSs) Assume that the in-
put space U has nonempty interior. Then,

Hi NHe = {0}, (@)
and thus (1) is reduced to [34]
1£13+ = /el + fell - G

The inner product between f = fr, + fa € H  and g = gL + ga €
H* is given by

(f @ = fr, gL)gy, +(fa,96) 3, - “

Theorem 3 Let k : U X U — R be the reproducing kernel of
a real Hilbert space (H,(:,");,). Then, given an arbitrary w >
0, kw(u,v) = wk(u,v), u,v € U, is the reproducing kernel
of the RKHS (M, (-,")4,.,) With the inner product (w,v), , =

w ' (u,v),, u,v EU.

Proof: See [29].
The following holds directly by Theorems 1-3 and Corollary 1.

Corollary 2 (Weighted norm and reproducing kernel) Given
any wr,we > 0, kw(uw,v) = wLkL(u,v) + weke(u,v),
w,v € U, is the reproducing kernel of the sum space H™' equipped
with the inner product

(9030t w = wr {frogL)py, + w5 (f6, 965, - )
The induced norm is given by
11 o = wi " 1 fell3y, +wa" I fall3y, - ©)

Without loss of generality, we let wi, = wg = 1 in Section 3.
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3. ONLINE LEARNING IN SUM SPACE H*

3.1. Dictionary Design

Due to the interior assumption on the input space U, it is seen that
the dimension of My, is L + 1. It is clear that xr,(-,0) = ¢ and
wL(, ;) — kL(-,0) = e](-), where e; € R” is the unit vector
having one at the jth entry and zeros elsewhere. Based on this ob-
servation, one can see that

D = {rr(-, €;) — k(- 0)}j1 U {rL(-,0)} @)
gives a basis of the L + 1 dimensional space Hi,. A typical choice
for the parameter c of the linear kernel is ¢ = 1. If one knows that
the linear component of 1) is zero-passing, one can simply let ¢ = 0
and remove {kr (-, 0)} from the dictionary.

The dictionary Dg,, for the Gaussian kernel should be time-
dependent in general and needs to be constructed in online fashion.
A growing strategy is given as follows: (i) start with Dg,—1 = 0,
and (ii) add a new candidate kG (-, u,) into the dictionary at each
time n € N only when it is sufficiently novel. In this case, the
dictionary can be expressed as Dg,, = {ka(-,uj)}jes, for
some *7’" = {jfn)v]én)a tr 7]T(Z>} c {07 17 27 e 771}, where
Ty is the size of the Gaussian dictionary. Our novelty criterion is
based on Platt’s criterion [15]: Kc (-, wn) is regarded to be novel if

2
U — Un .
max exp —w < ¢ for some prespecified thresh-
u€DG n 202

old § € (0,1) and if |dy, — <pn(un)|2 > € |<pn(un)\2 for some
prespecified error bound € > 0. Here, ¢y, (wr,) is the nonlinear filter
output for the input vector u,; it is described better in Section 3.2.
In the present study, we consider no pruning strategy for clarity of
presentation; in practice, one may adopt some pruning strategy (see,
e.g.,[1,4,5,11,12,16-20]).

3.2. Adaptive Learning Algorithm

Our nonlinear adaptive filter takes the following form:

On = PLn+@an €M |, neN, ¥
where ¢r1.., € HL, pa,n € Ma,n—1 :=spanDg n-1 C Hg,and

ME=HL+Maen CH", neN. ©)
We assume that

on € ME M, (10)

which means that ‘active’ elements in Dg ,,—1 remain in the updated
dictionary Dg,. At every time instant n € N, a new measurement

uy, and d,, arrives, and ¢, is updated to pn41 € M} based on the
new measurement. We define the following subset of the dictionary

subspace M :

IL, = {f € MI | flun) = {f, ”("u")>H+ = d"}7

which contains those vectors which nullify the instantaneous error.
Note here that II,, can also be represented as

I, == M} NI, 5, (11)

where T, o = {f € H¥ | f(un) = (f,5( n)) e = din} is
a hyperplane in the whole space ™. For an initial filter o € H™*
(¢o := 0 without any a priori information), our kernel adaptive filter
is updated by the following simple recursion:

©nt1 = P+ A (P, (on) —@n) €M, neN, (12)



‘HL

A ’i(.’ un)
K/L("un) ::,,,,,,_,_,_,4 ]
Pyt (80, un))
MGn “G(',un)
01
PMG’"'(HG('7un))
“ |
(a)
s L)

(b)

Fig. 1. A geometric interpretation of P, 1 ((-, un)) and Pr1,, (¢n).

where A, € (0,2). Here, P, (n) := argmin;cry, || f — @nlly+
is the orthogonal projection of ¢,, onto I1,, [35] and can be computed
as follows [29, Proposition 1 and Lemma 1]:

dn — @n(n)
el

P, (¢n) PMj; (h(-,un)). (13)

Here,
Py (6 un)) = 6L, un) + Prg, (ke ( un)),  (14)

where

Pumg (ka(s,un)) Z ajka(,uj) (15)
JE€EITn
. T . . .
with a := [a]_<n> Q) t ,a]_<n>] satisfying the following nor-
1 2 ™n
mal equation: Ka = b. Here, K € R™*"™ is the Gram ma-

trix (also called the kernel matrix) whose (p, q) entry is Kpq =
KG (u.<n>,u<n>) and b := [HG (u .(n),un> ko (u .(n),un> ,
Ip Jq J1 J2

T
,KG (uj(n) , un)] € R"™. Fig. 1(a) presents a geometric in-
terpretation of P, ;+ (k(:, un)) in (14), and Fig. 1(b) presents that of

Pr,, (¢n) in (13); see also (8), (9), and (11).
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3.3. Complexity Issue and Practical Remedy

The computation of Pag ,, (kc (-, un)) in (15) would involve the
inversion of the r, X r, kernel matrix K (if invertible) as well as
the multiplication of the inverse matrix with a vector. A practical
remedy to reduce the complexity is the selective update: modify the
hyperplane II,, into

M, = {f €V | f(un) = (f6(, un))ps =dn}, (16)

where VI := Hy, + Va,n with
Van = Man+9a.n :=span Dg.n 4+ ¢c.n C Ma,n. (17)

Here, Dg ., = {ra(,ui)}es, for Jp, 1= {L§”>,L§"), e Ls,,)} -
Jn 18 a size-s, selected subset of the dictionary Dg n (sn < T0),

containing a few ka,n(-,u;)s in Dg,, that are most coherent to
KkG,n (-, un). More precisely, choose J, so that kg,n(u., un) >
KkGn(uj,un) forany ¢ € Jn,j € Jn \ Jn [30], or equivalently,
|, — un|lgr < || — wn||pes ie., collect s, neighbors of wy.
The validity of this selection strategy will be shown in Section 4.
The update equation (12) is modified into

Ont1 = @n + An(Pg, (pn) — on) € M, nEN, (18)

where A, € (0,2). The algorithm in (18) is a sum-space extension
of the HYPASS algorithm proposed in [30], and is a particular case
of the Cartesian HYPASS (CHYPASS) algorithm derived in [29]

through the product-space formulation.®> The projection Pg_ (¢n)
in (18) can be computed as

dn Wn(“n)

[P s,

where M, := Hr + Ma,n. We mention here that V;F = M +
G,n- Finally, P+ ((-, wn)) in (19) is given by

= n+ P/\}[j{ k(- un)), (19)

Pt (5 un)) = mn (- un) + Py, (5a(oun))  (20)

with
Py, (ko (un) = D Bura(-w) @
LEJTL
T . ) .
where 3 := [ﬂ&")’ﬂé”) ’/612")] € R°» satisfies K3 =

with an sp, X s, Gram matrix K whose (p,q) entry is given

by f{pq = Kg (uL(n),uL(n)) and a length s, vector b :=
P q

T
[K/G (’LL (n)vun) y KRG (u (W)vun> ;o s KRG (’lL (n)’un>] .
L1 L Lsp

Under the use of linear and Gaussian kernels (x1, and kg) to-
gether with the novelty criterion described in Section 3.1, the com-
plexities of the proposed algorithm and MKNLMS [17] are both
linear in the dictionary size r,,. To be specific, the complexity of
MKNLMS is (L + 5)rn + 3L + min{L, r, } + 6 and that of the
proposed algorithm is (L + 3)r, + 3L + O(s2). Here, complexity
means the total number of multiplications, divisions, and compar-
isons for updating the coefficients and dictionary at each iteration; L
is the dimension of the input space I; and O(s?) is for the inversion

of the matrix K which is small since s, < 5 typically.

3In the present case, the sum space M. is isomorphic to the Cartesian
product of Hy, and Hq, and therefore the algorithms obtained through the
sum-space and product-space formulations are the same essentially.



Table 1. Parameter settings and complexities for the experiment.

parameter Test MSE [dB]

(complexity)
KNLMS [ A, =05 0 =0.92 —324
(1729)
HYPASS | ¢ =0.5 0=092,s,=5 —43.1
(1524)
MKNLMS| ¢ = 0.01 0=09,c=1 —64.7
wr, = 0.8, wg = 0.2 (1278)
CHYPASS 0=09,c=1 —66.4
wr, = 0.8, wg = 0.2 (1155)

Spn =25

4. NUMERICAL EXAMPLES

We show the efficacy of the proposed algorithm (CHYPASS) for
adaptive estimation of the real-life nonlinear dynamical system ly-
ing in the Silverbox data set* shown in Fig. 2. The input signal is
divided by the maximum value so that its maximum is normalized to
one. The 80,000 samples after the 40,000th sample (after the ‘head
of the arrow’) are used for learning. The first 40,000 samples are
used as test data. We let u,, := [wmm”_l,xn_g,yn_l,yn_g]T
(ie.,L = 5)and dy, := yn,n = 0,1,2,---, where z,, € R and
yn € R denotes the input and output signals, respectively (o and
yo corresponds to the 40, 001th samples of the input and output, re-
spectively). We compare the proposed algorithm with MKNLMS
[17], HYPASS [30], and KNLMS [8]. Here, the same linear and
Gaussian kernels are employed for MKNLMS. For the design of
Gaussian-kernel dictionaries, we employ the same strategy as de-
scribed in Section 3.1 for all the algorithms. Table 1 lists the set of
parameters used in the experiment for each algorithm as well as the
Test-MSE/complexities averaged over samples/iterations. For CHY-
PASS, ¢ = 1 is a default choice and the weights can be designed as
wr, + wg = 1. Note that the threshold ¢ for the single kernel meth-
ods (KNLMS and HYPASS) is set to a slightly larger value than that
for the multikernel methods (MKNLMS and CHYPASS) for demon-
strating the efficiency of the multikernel methods.

The results are plotted in Fig. 3. Here, “Dictionary size” for
CHYPASS and MKNLMS means an arithmetic average of |Dr| +
|Da,n| (= mn + L + 1). The average dictionary size was: KNLMS
172.7, HYPASS 170.2, MKNLMS 1254, and CHYPASS 1214.
One can observe that (i) CHYPASS significantly outperforms the
other algorithms with the lowest complexity, and (ii) the multiker-
nel methods attain lower training/test MSEs with a smaller dictio-
nary size. We emphasize here that the low MSEs of CHYPASS and
MKNLMS are due to the exploitation of the partial linearity of the
dynamical system and the low complexity of CHYPASS is due to
the selective updating strategy presented in Section 3.3.

5. CONCLUDING REMARKS

We have proposed an efficient multikernel adaptive filtering algo-
rithm based on the iterative projections in the sum space of linear
and Gaussian RKHSs. The major difference from the existing
multikernel adaptive filtering algorithms is that the projection is
operated in a functional space. The algorithm has been derived
by reformulating the HYPASS algorithm in the sum space. The
selective updating strategy has also been presented to reduce the
complexity. The numerical examples have demonstrated that the
proposed algorithm attains better performance with lower com-
plexity than KNLMS, HYPASS, and MKNLMS for the real-life
partially-linear dynamical system. We finally remark that the
functional-space-projection methods (CHYPASS and HYPASS)
have outperformed their Euclidean-space-projection counterparts

4The data was used in the NOLCOS 2004 Special Session benchmark
[26].
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(a) Input

(b) Output

Fig. 2. Signal for the Silverbox data set.
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Fig. 3. (a) Learning curves and (b) evolution of dictionary size.

(MKNLMS and KNLMS) in the present experimental results. Our
recent research suggests that this is because the functional-space-
projection methods would have a decorrelation property, but further
investigations would be required to verify this empirical finding.



[2]

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

6. REFERENCES

J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learn-
ing with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8,
pp- 2165-2176, Aug. 2004.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Trans. Signal Process., vol. 52, no.
8, pp. 2275-2285, Aug. 2004.

A. V. Malipatil, Y.-F. Huang, S. Andra, and K. Bennett, “Ker-
nelized set-membership approach to nonlinear adaptive filter-
ing,” in Proc. IEEE ICASSP, 2005, pp. 149-152.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the
best hyperplane with a simple budget perceptron,” Journal of
Machine Learning Research, vol. 69, no. 2-3, pp. 143-167,
2007.

F. Orabona, J. Keshet, and B. Caputo, “The projectron: A
bounded kernel-based perceptron,” in Proc. ICML, 2008, pp.
720-727.

W. Liu and J. Principe, “Kernel affine projection algorithms,”
EURASIP J. Adv. Signal Process., vol. 2008, pp. 1-12, 2008,
Article ID 784292.

K. Slavakis, S. Theodoridis, and I. Yamada, “Online kernel-
based classification using adaptive projection algorithms,’
IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2781-2796,
July 2008.

C. Richard, J. Bermudez, and P. Honeine, “Online prediction
of time series data with kernels,” IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 1058-1067, Mar. 2009.

W. Liu, J. Principe, and S. Haykin, Kernel Adaptive Filtering,
Wiley, New Jersey, 2010.

S. Theodoridis, K. Slavakis, and 1. Yamada, “Adaptive learn-
ing in a world of projections: a unifying framework for linear
and nonlinear classification and regression tasks,” IEEE Signal
Process. Mag., vol. 28, no. 1, pp. 97-123, Jan. 2011.

S. Van Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria,
“Kernel recursive least-squares tracker for time-varying regres-
sion,” IEEE Trans. Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1313-1326, Aug. 2012.

P. Zhao, J. Wang, P. Wu, R. Jin, and S. C. H. Hoi,
“Fast bounded online gradient descent algorithms for scalable
kernel-based online learning,” in Proc. ICML,2012.

S. Haykin, Adaptive Filter Theory, Prentice Hall, New Jersey,
4th edition, 2002.

A.H. Sayed, Fundamentals of Adaptive Filtering, Wiley, New
Jersey, 2003.

J. Platt, “A resource-allocating network for function interpola-
tion,” Neural Computation, vol. 3, no. 2, pp. 213-225, 1991.

M. Yukawa, “Nonlinear adaptive filtering techniques with mul-
tiple kernels,” in European Signal Processing Conference (EU-
SIPCO),2011, pp. 136-140.

M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. Sig-
nal Processing, vol. 60, no. 9, pp. 4672—4682, Sept. 2012.

B. Chen, S. Zhao, S. Seth, and J. C. Principe, “Online effi-
cient learning with quantized KLMS and [, regularization,” in
Int. Joint Conf. Neural Netw.,2012.

W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary
learning for kernel LMS,” IEEE Trans. Signal Processing, vol.
62,n0. 11, pp. 2765-2777, Jun. 2014.

M. Takizawa and M. Yukawa, “An efficient sparse kernel adap-
tive filtering algorithm based on isomorphism between func-
tional subspace and Euclidean space,” in Proc. IEEE ICASSP,
2014, pp. 4541-4545.

3366

[21]
[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

R. Pokharel, J. Principe, and S. Seth, “Mixture kernel least
mean square,” in /EEE IJCNN, 2013.

M. Yukawa and R. Ishii, “Online model selection and learning
by multikernel adaptive filtering,” in Proc. EUSIPCO, 2013.

W. Gao, C. Richard, J.-C. M. Bermudez, and J. Huang, “Con-
vex combinations of kernel adaptive filters,” in I[EEE Int. Work-
shop on MLSP,2014.

F. A. Tobar, S.-Y. Kung, and D. P. Mandic, “Multikernel least
mean square algorithm,” [EEE Trans. Neural Networks and
Learning Systems, vol. 25, no. 2, pp. 265-277, Feb. 2014.

W. Hirdle, H. Liang, and J. Gao, Partially Linear Models,
Physica-Verlag, Heidelberg, Germany, 2000.

M. Espinoza, J. A. K. Suykens, and B. D. Moor, “Kernel based
partially linear models and nonlinear identification,” I[EEE
Trans. Autom. Control, vol. 50, no. 10, pp. 1602-1606, Oct.
2005.

Y.-L. Xu and D.-R. Chen, “Partially-linear least-squares regu-
larized regression for system identification,” IEEE Trans. Au-
tom. Control, vol. 54, no. 11, pp. 2637-2641, Nov. 2009.

J. M. Gil-Cacho, M. Signoretto, T. van Waterschoot, M. Moo-
nen, and S. H. Jensen, “Nonlinear acoustic echo cancellation
based on a sliding-window leaky kernel affine projection algo-
rithm,” IEEE Trans. Audio, Speech and Language Processing,
vol. 21, no. 9, pp. 1867-1878, Sept. 2013.

M. Yukawa, “Adaptive learning in Cartesian product of repro-
ducing kernel Hilbert spaces,” 2014, submitted for publication
(available online arXiv:1408.0853).

M. Yukawa and R. Ishii, “An efficient kernel adaptive filtering
algorithm using hyperplane projection along affine subspace,”
in Proc. EUSIPCO, 2012, pp. 2183-2187.

H. Q. Minh, “Some properties of Gaussian reproducing kernel
Hilbert spaces and their implications for function approxima-
tion and learning theory,” Constr. Approx., vol. 32, no. 2, pp.
307-338, Oct. 2010.

B. Scholkopf and A. J. Smola, Learning with Kernels, MIT
Press, Cambridge, MA, 2001.

S. Theodoridis and K. Koutroumbas,
Academic, New York, 4th edition, 2008.

N. Aronszajn, “Theory of reproducing kernels,”
Trans. Amer. Math. Soc., vol. 68, no. 3, pp. 337-404,
May 1950.

D. G. Luenberger, Optimization by Vector Space Methods,
New York: Wiley, 1969.

Pattern Recognition,



