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ABSTRACT
We consider networks of agents cooperating to minimize a global
objective, modeled as the aggregate sum of regularized costs that are
not required to be differentiable. Since the subgradients of the indi-
vidual costs cannot generally be assumed to be uniformly bounded,
general distributed subgradient techniques are not applicable to these
problems. We isolate the requirement of bounded subgradients into
the regularizer and use splitting techniques to develop a stochastic
proximal diffusion strategy for solving the optimization problem by
continuously learning from streaming data. We represent the im-
plementation as the cascade of three operators and invoke Banach’s
fixed-point theorem to establish that, despite gradient noise, the
stochastic implementation is able to converge in the mean-square-
error sense within O(µ) from the optimal solution, for a sufficiently
small step-size parameter, µ.

Index Terms— Distributed optimization, diffusion strategy,
proximal operator, gradient noise, fixed point, regularization.

1. INTRODUCTION AND RELATED WORK

We consider a network of N agents, where each agent k is equipped
with a risk Jk(w), which is the expectation of some loss function
and written as Jk(w) = EQk(w). The individual agents run a
distributed strategy, such as consensus [1–4] or diffusion [5–7], to
compute estimates for the global minimizer of some aggregate cost
function specified further ahead in (4). It is sufficient for the pur-
poses of this work to focus on the case in which each agent k runs
the following Adapt-then-Combine form of diffusion [5]:

φk,i = wk,i−1 − µ∇̂wJk(wk,i−1) (1a)

wk,i =

N∑
`=1

a`kφ`,i (1b)

where the {a`k} are convex combination coefficients that satisfy

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (2)

with Nk denoting the neighborhood of agent k. In (1b), the symbol
wk,i denotes the iterate that is computed by agent k at iteration i,
while ψk,i is an intermediate state resulting from the self-learning

step (1a). Moreover, the notation ∇̂wJk(·) denotes a stochastic ap-
proximation for the true gradient vector of Jk(·), which is gener-
ally unknown, since the statistical properties of the data are not as-
sumed to be known in the adaptive context. The difference between
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the true gradient of Jk(·) and its approximation is called gradient
noise. In (1a)–(1b), we are using boldface letters for the variables
{wk,i,φk,i} to highlight the fact that they are random quantities;
we will be using normal font to represent deterministic quantities.

When the network is strongly-connected (i.e. connected with
at least one self-loop), the left-stochastic combination matrix A =
[a`k] will be primitive with a single eigenvalue at one, while all other
eigenvalues will lie strictly inside the unit circle [5, 8, 9]. We denote
the left and right eigenvectors ofA that are associated with the eigen-
value at one by:

1
TA = 1T, Ap = p (3)

and normalize the entries of p to add up to one. It follows from the
Perron-Frobenius Theorem [8,9] that all entries of p are strictly pos-
itive. We denote the individual entries of p by {pk}. It is shown
in [5,6] that, under some reasonable technical conditions on the cost
functions and gradient noise, the iterate wk,i by each agent k con-
verges in the mean-square sense to the unique minimizer, wo, of the
following weighted aggregate cost:

wo = argmin
w

N∑
k=1

pkJk(w) (4)

within O(µ), namely,

lim sup
i→∞

E‖wo −wk,i‖2 = O(µ) (5)

so that all agents are able to approach the same global minimizer for
a sufficiently small step-size.

1.1. Regularized Costs

In many situations, there is prior information available about wo

(such as knowing that wo is sparse, or that it is constrained to a
certain region in space, or that it is close to some value). One way to
exploit this information is to employ regularization to favor solutions
with the desired properties. We therefore modify the cost function
for every agent k as follows:

Jreg
k (w) , Jk(w) + δµνRorg

k (w) , Jk(w) +Rk(w) (6)

where {δ, ν} are non-negative parameters and the regularization
function Rorg

k (·) does not need to be differentiable. Note that we
allow for two parameters: δ represents absolute scaling and is gen-
erally chosen small, while the exponent ν ≥ 0 allows the scaling to
depend on the step-size parameter of the algorithm.

Some useful distributed subgradient techniques are developed
in [3]. However, these techniques require the subgradients of each
cost Jreg

k (w) to be uniformly bounded for all w and they do not ex-
ploit the composite structure of (6). As such, they are not applicable
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to several situations of interest (even those involving mean-square-
error costs). References [10–13] provide variations for such prob-
lems using diffusion strategies for the special case of mean-square-
error costs.

The main purpose of this article is to develop a distributed strat-
egy that is applicable to cost functions of the form (6) where only
the regularizer’s subgradient is required to be uniformly bounded.
This situation is satisfied in many cases of interest, such as in `1-
regularization and variations thereof. We achieve this objective by
relying on the use of splitting techniques to propose an extension
of the diffusion strategy for regularized aggregate costs. Splitting
techniques are common in the deterministic optimization literature
[14–19], where it is assumed that the individual costs are known be-
forehand so that their gradients and/or proximal projections can be
computed precisely. This is rarely the case in adaptive environments.
The reason is that the expectation of the loss functions cannot be
computed beforehand because the statistical distribution of the data
is rarely known. Only data realizations are available. We will ex-
plain how a stochastic approximation variant can be motivated and
then examine the impact of gradient noise on the learning ability of
the resulting distributed solution. The key conclusion will be that the
proposed proximal diffusion strategy is able to approach the global
minimizer, wo, with a mean-square-error that is sufficiently small
and within O(µ).

2. PROXIMAL DIFFUSION STRATEGY

To begin with, we recall that, in the purely deterministic context,
the proximal operator relative to Rk(·) with step-size µ is defined
by [17]:

proxµRk
(x) , argmin

u

(
Rk(u) +

1

2µ
‖x− u‖22

)
(7)

Evaluating Eq. (7) at x = wk,i−1 − µ∇wJk(wk,i−1), which is the
result of a gradient-descent step applied to Jk(w), yields the proxi-
mal gradient descent iteration:

wk,i = proxµRk
{wk,i−1 − µ∇wJk(wk,i−1)} (8)

From the optimality condition for Eq. (7), namely that the subgra-
dient set at the minimizer contains the zero-vector, it follows that
[17, 19]:

wk,i ∈ wk,i−1 − µ∇wJk(wk,i−1)− µ ∂wRk (wk,i) (9)

where ∂wRk (wk,i) denotes the set of subgradients of Rk(w) at
wk,i. The proximal operation (8) returns a particular subgradient
vector, which we denote by ∂̂wRk(wk,i). In this way, the resulting
iterate from (9) can be written as

wk,i = wk,i−1 − µ∇wJk(wk,i−1)− µ ∂̂wRk (wk,i) (10)

Observe from (9) and (10) that ∇wJk(·) is evaluated at wk,i−1,
whereas ∂wRk(·) is evaluated atwk,i. This property sometimes mo-
tivates the alternative designation “forward-backward” operator for
the proximal gradient step. Proximal gradient descent is of particular
interest when (7) can be evaluated efficiently or even in closed form
– see [14] for an overview of closed form solutions of (7) for par-
ticular Rk(·). In the case of the `1-norm, for example, the proximal
operator reduces to soft-thresholding [18, 20].

Some recent studies examine the performance of inexact proxi-
mal methods for particular sources of uncertainties in the gradient in-
formation. For example, the work in [21] considers inexact proximal

gradient descent where the errors in the computation of the gradient
and/or proximal operator are assumed to be deterministic and decay
to zero. The work [22] builds on this analysis and develops a fast
distributed implementation that enforces agreement among agents
by embedding i communication steps between iterations i and i+ 1
and letting i → ∞. This construction can be reasonable in the de-
terministic context, where a given accuracy can be tolerated after
finite time i, but is infeasible in the context of continuous adaptation
and learning from streaming data since it will require the number
of communication steps to grow unbounded. In [23] regret bounds
for stochastic proximal subgradient descent are derived under the as-
sumption of Lipschitz continuous costs; the bounds there were lim-
ited to a single-agent implementation.

Returning to (1a)–(1b), the above discussion motivates us to in-
troduce the following proximal implementation of diffusion:

φk,i = proxµRk

{
wk,i−1 − µ∇̂wJk(wk,i−1)

}
(11a)

wk,i =

N∑
`=1

a`kφ`,i (11b)

where a proximal step has been added to (1a) as shown by (11a).
This adjustment is meant to address the presence of the regulariza-
tion term added in (6). Observe that (11a)–(11b) responds imme-
diately to streaming data; it does not require repeated iterations be-
tween two successive time instants. We will further see that this
implementation does also not require the gradient noise to be deter-
ministic or to decay to zero.

The analysis in the subsequent sections will establish the follow-
ing facts about the stochastic implementation (11a)–(11b):
• In Section 4.1, it will be shown that, when the true gradient

vectors are employed in (11a), then each agent in the diffu-
sion strategy will converge to a unique fixed point, denoted
by wk,∞.

• In Section 4.2, we will relate wk,∞ to the global minimizer
wo of (4) and show that ‖wo−wk,∞‖2 ≤ O(µ2ν)+O(µ2).

• In Section 4.3, we will conclude that, for ν ≥ 1/2, recursion
(11a)–(11b) with gradient noise converges towo withinO(µ)
in the mean-square-error sense.

Due to space limitations, proofs and derivations are omitted. We
focus on highlighting the conclusions and their interpretations. The
following two assumptions are needed in establishing the results –
see [5] for explanations and motivation.

Assumption 1 (Bounded Hessian). For any k, the Hessian matrix
function, Hk(w) = ∇2

wJk(w), is assumed to be uniformly bounded
from below and from above:

0 < λminIN ≤ Hk(w) ≤ λmaxIN (12)

Assumption 2 (Gradient Noise Process). For any k, the gradient
noise process is defined as

sk,i(wk,i−1) = ∇̂wJk(wk,i−1)−∇wJk(wk,i−1) (13)

and satisfies

E [sk,i(wk,i−1)|F i−1] = 0 (14a)

E
[
‖sk,i(wk,i−1)‖2|F i−1

]
≤ β2‖wk,i−1‖2 + σ2

s (14b)

for some non-negative constants {β2, σ2
s}, and where F i−1 denotes

the filtration generated by the random processes {w`,j} for all ` =
1, 2, . . . , N and j ≤ i−1, i.e., F i−1 represents the information that
is available about the random processes {w`,j} up to time i− 1.
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3. OPERATOR REPRESENTATION OF PROXIMAL
DIFFUSION

We first show that the proximal diffusion strategy (11a)–(11b) can
be represented as the concatenation of three operators, in a manner
that extends the representation developed in [7] for the conventional
diffusion iteration without proximal steps. We subsequently show
that this mapping is contractive and invoke Banach’s fixed-point the-
orem [24] to conclude that the proximal diffusion mapping has a
unique fixed-point. We first introduce some notation and definitions.
Thus, let

x = col {x1, x2, . . . , xN} ∈ RMN (15)
denote an N × 1 block-column vector, where each xk is M × 1.

Definition 1. (Combination Operator) The combination operator
TA : RMN → RMN is defined as the linear mapping:

TA(x) , (AT ⊗ IM )x = col

{
N∑
`=1

a`kx`

}
(16)

where A = [a`k] is an N ×N left-stochastic matrix and ⊗ denotes
the Kronecker product operation.

Definition 2. (Block Gradient Descent Operator) The block gradient
descent operator TG : RMN → RMN is defined as the non-linear
mapping:

TG(x) ,

 x1 − µ∇wJ1(x1)
...

xN − µ∇wJN (xN )

 (17)

Definition 3. (Stochastic Block Gradient Descent Operator) The
stochastic block gradient descent operator T̂G : RMN → RMN

is defined as the non-linear mapping:

T̂G(x) ,


x1 − µ∇̂wJ1(x1)

...
xN − µ∇̂wJN (xN )

 = TG(x) + µs(x) (18)

where
s(x) , col {s1(x1), . . . , sN (xN )} (19)

is the (block) gradient noise vector.

Definition 4. (Block Proximal Operator) The block proximal oper-
ator TP : RMN → RMN is defined as the non-linear mapping:

TP (x) ,

 proxµR1
(x1)

...
proxµRN

(xN )

 (20)

Using these operators, we can then rewrite the proximal dif-
fusion algorithm (11a)–(11b) more compactly as the following
concatenation of operators in terms of the network vector wi =
col {w1,i, . . . ,wN,i}:

wi = T̂ pd(wi−1) , TA ◦ TP ◦ T̂G(wi−1) (21)

Without gradient noise, this relation reduces to:

wi = Tpd(wi−1) , TA ◦ TP ◦ TG(wi−1) (22)

Fig. 3 displays the stochastic proximal diffusion implementation as
a cascade of operators.

Fig. 1. Proximal diffusion as a cascade of operators.

4. MAIN RESULTS

4.1. Fixed-Point of Deterministic Recursion

Lemma 1 (Contractive Mapping). The deterministic proximal diffu-
sion operator Tpd(·) defined in (22) satisfies

‖Tpd(x)− Tpd(y)‖b,∞ ≤ γ · ‖x− y‖b,∞ (23)

with γ2 , 1 − 2µλmin + µ2λ2
max, and where ‖ · ‖b,∞ denotes the

block maximum norm [5]. The condition on µ to guarantee γ2 < 1
is:

0 < µ <
2λmin

λ2
max

(24)

Proof. Omitted for brevity. We only note that the argument exploits
the following property of the proximal operator [17]:

‖proxµR(x)− proxµR(y)‖ ≤ ‖x− y‖ (25)

It then follows from Banach’s fixed point theorem [24,25] that wi =
Tpd(wi−1) converges to a unique fixed-point, w∞, geometrically.

4.2. Bias Analysis

Now we analyze how far this fixed point w∞ is from the desired
global solution,wo, to problem (4). In steady-state, the deterministic
fixed-point equation (22) can be unfolded as follows:

φk,∞ = proxµRk
{wk,∞ − µ∇wJk(wk,∞)} (26a)

wk,∞ =
N∑
`=1

a`kφ`,∞ (26b)

To proceed, we introduce an assumption of bounded subgradients,
which is common in the subgradient [3,23] and distributed proximal
gradient [22] literature, namely, that for every agent k, the set of
subdifferentials ∂wRorg

k (w) is uniformly bounded, i.e. for all w:

‖∂wRorg
k (w)‖ ≤ ηorgk (27)

for some non-negative constant ηorgk . For convex functions, the state-
ment is equivalent to requiring Rorg

k (w) to be Lipschitz continuous
with constant ηorgk . For the scaled costs Rk(w) , δµνRorg

k (w),
condition (27) translates to:

‖∂wRk(w)‖ ≤ δµνηorgk , ηk = O(µν) (28)
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Now we subtract Eqs. (26a) and (26b) from wo and define the error
variables w̃k,∞ = wo − wk,∞. This leads to the error recursion:

φ̃k,∞ = w̃k,∞ + µ∇wJk(wk,∞) + µ∂̂wRk(φk,∞) (29a)

w̃k,∞ =

N∑
`=1

a`kφ̃`,∞ (29b)

Using the mean-value theorem [5, 26], we can write:

∇wJk(wk,∞) = ∇wJk(wo)−Hk,∞w̃k,∞ (30)

where Hk,∞ denotes the Hessian of Jk(w) at wk,∞. We get

φ̃k,∞=(IM−µHk,∞) w̃k,∞+µ∇wJk(wo)+µ∂̂wRk(φk,∞) (31a)

w̃k,∞=

N∑
`=1

a`kφ̃`,∞ (31b)

We next introduce the following extended vectors and matrices:

w̃∞ , col {w̃1,∞, . . . , w̃N,∞} (32)

A , A⊗ IM (33)

H∞ , diag {H1,∞, . . . , HN,∞} (34)

B∞ , AT(IMN − µH∞) (35)

go , col {∇wJ1(wo), . . . ,∇wJN (wo)} (36)

r∞ , col
{
∂̂wR1(φ1,∞), . . . , ∂̂wRN (φN,∞)

}
(37)

With these quantities, relations (31a)–(31b) lead to:

w̃∞ = B∞w̃∞ + µAT (go + r∞) . (38)

Because A is a left-stochastic and primitive matrix, it admits a Jor-
dan decomposition of the form A = VεJV

−1
ε with

Vε =
[
p VR

]
, J =

[
1 0
0 Jε

]
, V −1

ε =

[
1T

V T
L

]
(39)

where all diagonal entries of Jε are inside the unit circle and Jε
consists of Jordan blocks with the value ε on the first lower diag-
onal instead of ones [5, 8]. Pre-multiplying both sides of (38) by
VT
ε = V T

ε ⊗ IM gives:

w∞ = B∞w∞ + µVT
ε AT (go + r∞) (40)

where w∞ = VT
ε w̃∞ and B∞ = VT

ε B∞(V−1
ε )T. It follows that

w∞ = µ
(
IMN − B∞

)−1 VT
ε AT (go + r∞) . (41)

It was shown in [5, p. 541, Lemma 9.4] that, for sufficiently small
step-sizes, it holds that(

IMN − B∞
)−1

=

[
O(1/µ) O(1)
O(1) O(1)

]
(42)

where the leading (1, 1) block has dimensionsM×M . It can further
be verified from the decomposition of Vε in (39), that

VT
ε AT (go + r∞) =

[ ∑N
`=1 p`∂̂wR`(φ`,∞)

O(1) + VT
RATr∞

]
(43)

Theorem 1. Under assumption (27) and for small µ, the steady-
state bias of the deterministic proximal diffusion recursion is
bounded as:

‖wo − wk,∞‖2 ≤ O
(
µ2ν)+O(µ2) (44)

Proof. The result follows from (28) and (42)–(43).

4.3. Evolution of Stochastic Recursion
We now examine how close the stochastic recursionwi = T̂ pd(wi−1)
approaches wo. For this purpose, we introduce the mean-square per-
turbation vector at time i relative to w∞:

MSPi , col
{
E‖wk,i − wk,∞‖2

}
∈ RN (45)

Lemma 2. The MSP at time i can be recursively bounded as:

MSPi �
(
γ2 + 2µ2β2)ATMSPi−1 + µ2d (46)

where d = O(1). A sufficient condition on µ for stability of (46) is:

0 < µ <
2λmin

λ2
max + 2β2

(47)

It follows that
lim sup
i→∞

‖MSPi‖∞ = O(µ). (48)

Proof. Omitted for brevity.

The following theorem ties all results together.

Theorem 2. For sufficiently small step-sizes and ν≥1/2, the steady-
state MSD of the proximal diffusion algorithm (11a)–(11b) is

lim sup
i→∞

E‖wo −wk,i‖2 = O(µ) (49)

Proof. The result follows from (44) and (48).

5. NUMERICAL RESULTS

Consider a network of N = 10 agents and M = 20. The net-
work topology is shown in Fig. 2. Observations {dk(i),uk,i} for
each agent k are generated according to the linear regression model
dk = ukw

o + vk, where uk,i and vk(i) are zero-mean Gaus-
sian random variables with power shown in Fig. 3. The true wo

is sparse with only one non-zero element. For the special case with
Jk(w) = E‖dk − ukw‖2 and Rorg

k (w) = ‖w‖1, we compare the
performance of the regularized proximal diffusion implementation
(11a)–(11b) and the unregularized diffusion implementation (1a)–
(1b). Fig. 5 displays the steady-state MSD for different choices of
the step-size parameter. Note that, for small step-sizes, the MSD
of the proximal diffusion implementation decreases linearly with µ.
This is consistent with the theoretically derived expression (49).
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