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ABSTRACT

Although the LMS algorithm is often preferred in practice due to
its numerous positive implementation properties, once the parame-
ter space to estimate becomes large, the algorithm suffers of slow
learning. Many ideas have been proposed to introduce some a-priori
knowledge into the algorithm to speed up its learning rate. Recently
also sparsity concepts have become of interest for such algorithms.
In this contribution we follow a different path by focusing on the
separability of linear operators, a typical property of interest when
dealing with tensors. Once such separability property is given, a
gradient type algorithm can be derived with significant increase in
learning rate. Even if separability is only given to a certain extent,
we show that the algorithm can still provide gains. We derive quality
and quantity measures to describe the algorithmic behavior in such
contexts and evaluate its properties by Monte Carlo simulations.

Index Terms— Tensor, LMS algorithm, Separability

1. INTRODUCTION

The Least Mean Square (LMS) algorithm [1–3] as a canonical form
of a gradient type algorithm has received much attention over more
than five decades. In practice it is the algorithm that is implemented
in myriads of variants to achieve parametric learning.

1.1. Relation to Prior Work

While it exhibits many desirable properties for its implementations,
it suffers greatly if the parameter space becomes too large. At best
the learning rate is about 20dB/5M [3,4] if M denotes the number
of estimation parameters. Depending on the problem, many ideas
have been proposed to adapt the step-size [5, 6] and to include a-
priori knowledge into the update equations with the goal to achieve
faster convergence [7]. Also sparsity has been discovered as ben-
eficial property [8, 9] offering potentials to increase learning rates.
Recent approaches include sparsity constraints directly in the for-
mulation of the algorithm exploiting l0-norms [10, 11]. We on the
other hand will not assume sparsity but that a repetitive but not
periodic structure is imposed. Such structure can typically be de-
scribed in form of Kronecker products of vectors, matrices or ten-
sors. Tensors and their decomposition have attracted much interest
recently [12] due to the multitude of potential applications of so-
called Big Data [13, 14].

⇤This work was supported by the Austrian Science Fund (FWF) under
Awards S10611-N13 within the National Research Network SISE.

1.2. Our Contribution

In this contribution we will follow a new path, not employing spar-
sity. We assume that the impulse response v that needs to be iden-
tified can be described by separable partitions, e.g., in form of a
three-way tensor v = c⌦b⌦a. Such repetitive but not periodic be-
havior typically occurs if reflections dominate the impulse response
as if often the case in wireless transmissions. However, our method
does not rely on a perfect separability. We show that even if only
parts of the impulse response are separable, the algorithm can gain
performance.

1.3. Paper Structure

This paper provides in Section 2 a short introduction into separability
in the Least Squares (LS) sense. Based on these findings, the pro-
posed tensor LMS algorithm is derived in Section 3. We demonstrate
the algorithm behavior on some experimental examples in Section 4
and eventually we conclude the contribution in Section 5.

1.4. Notation

We describe the transpose of a vector or matrix by upperscript T and
denote the Kronecker product by ⌦. All signals are considered real
valued. The operator vec() realigns a matrix column by column into
a vector. Further we denote the set of right side eigenvectors of a
matrix by evec().

2. LINEARLY SEPARABLE OPERATORS

Linearly separable operators are well known in the context of fast
algorithmic implementations such as Fast Hadamard Transforma-
tion (FHT) or Fast Fourier Transformations (FFT). We provide here
a copy of the definition of separability for the convenience of the
reader, see, e.g., [15].

Definition 2.1 A linear operator A is said to be separable if A =

A1 ⌦A2 for some A1 and A2.

Obviously due to the product term, there is not a unique solution,
if it exists. While it is straightforward to show how to save complex-
ity once such separability is present (typically the savings are from
M

2 to M log2(M) which can be considerable if M is large), to
show if a vector or matrix is separable at all is not a simple step.
We thus show in this section how it can be achieved in the LS sense,
given vectors of length M that take on the position of linear oper-
ators. This is in fact the same problem as decomposing a rank one
tensor. In case of Definition 2.1 it is a two-way tensor, but general-
izations to, e.g., three way tensors are straightforward. The presented
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approach here follows the general concept of [16] that is based on
perfectly separable matrices. It was adapted to make it suitable for
long adaptive filters under general impulse responses.

Theorem 2.1 (LS Approximation) Consider a vector v 2 IR

(M⇥1)

with M = NP , i.e., v = [v1;v2; ...;vP

] with v

l

2 IR

(N⇥1)
; l =

1, 2, ..., P . There uniquely exist two vectors a 2 IR

N⇥1
,b 2 IR

P⇥1

with kak2 = 1 such that

{a,b} = argmin

a,b
kv � b⌦ ak22

in the LS sense.
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The equivalent expression
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is minimized by

selecting a the eigenvector to the largest eigenvalue of

a = argmax evec

PX

l=1

v

l

v

T

l

.

Theorem 2.2 (Orthogonality) Given a set of vectors {a,b} ac-
cording to Theorem 2.1 to separate a vector v in the LS sense, v can
exactly be represented by

v = b⌦ a+w

with error vector w being orthogonal onto the tensor product

w

T

(b⌦ a) = 0.

Proof: The approximation b⌦a =

h
I

P

⌦ aaT

aT a

i
v. The error vector

w = v � b ⌦ a;w 2 IR

M⇥1 is indeed orthogonal to the approxi-
mation b⌦ a as required for an LS estimation:
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We write the error also in concatenated form w = [w1;w2; ...;wP

];

w

k

2 IR
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; k = 1, 2, ..., P and find for each partition w
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� aaT
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which is orthogonal onto the approximation aaT

aT a
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k

.

Theorem 2.3 (MMSE) Separating a two-way rank one tensor in
the LS sense as described in the previous Theorems 2.1 and 2.2, its
corresponding minimum MSE (MMSE) is given by

MMSE =

PX

k=1

w

T

k

w

k

=

PX

k=1

v

k

✓
I

N

� aa

T

a

T

a

◆
v

k

.

Proof: The proof follows directly from the orthogonality property
of LS.

Note: if several partitions of M = NP exist, the various MMSE
values can be checked and based on those, it can be decided which
partitioning is most suitable to linear separation. The normalized
MMSE value, i.e.,

�(N,P ) =

P
P

k=1 w
T

k

w

kP
P

k=1 v
T

k

v

k

 1

provides a measure for the quality of the separation. We will later
use such measure to describe the suitability of the proposed gradi-
ent approach for identifying such systems. The smaller the value
�(N,P ), the better is the separation property of the system. Ideally
the norms kw

k

k22 should be zero to obtain a perfect separability. If
however some terms are larger, they indicate outliers or anomalies,
thus an easy method to detect them and if necessary treat them with
particular methods.

3. A TENSOR LMS ALGORITHM

Let us assume that the impulse response that is to estimate can be
separated as v = b ⌦ a. Then it is sufficient to estimate ˆ

a and ˆ

b

in order to reproduce ˆ

v =

ˆ

b ⌦ ˆ

a. We assume that v is of length
M = M

a

M

b

, thus a 2 IR

Ma⇥1 and b 2 IR

Mb⇥1. Let us consider
the convolution with an input signal at time instant k defined by a
vector x

k

= [x

k,1,xk,2, ...,xk,Mb ] 2 IR

M⇥1 which can be split in
M

b

partitions of length M

a

. We find that

v
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where we reassembled the partitions of x
k

line by line in form of a
matrix X

k

(two-way tensor). This convolution can be further formu-
lated as

a

T

X

k

b = y

T

b = a

T

z,

by which we introduced short notations of the partial convolutions
y = a

T

X

k

and z = X

k

b.
Assume d

k

to be the noisy output observation and {ˆa
k�1,

ˆ
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k�1,
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=
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,

ˆ
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= X

k

ˆ

b

k�1} the estimates at time instant k of
{a,b,a

k

, z

k

}, respectively. Deriving the LMS algorithm now in
partitions with respect to a and b, we obtain

e

k

= d

k

� ˆ

a

T

k�1Xk

ˆ

b

k�1, (1)
ˆ

a

k

=

ˆ
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e

k

, (2)
ˆ

b

k

=

ˆ

b

k�1 + µ

b,k

ˆ

y

k

e

k

. (3)

Convergence The convergence analysis turns out to be complicated
due to the cascade nature of the algorithm. The parameters ˆ

a

k

de-
pend on ˆ

b

k

and vice versa. For cascaded algorithms [17, 18] it is
known that they typically show only local [19–22] and not global
robustness but behave well in the mean squared error (MSE) sense.
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The undistorted error e
a,k

can be written in numerous ways:
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which almost resembles a desired form I � µ
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We recognize that these perturbation terms are proportional to the
parameter errors ˜

a

k�1. Once the algorithm is close to the solution,
it will converge rapidly. The existence of these off-diagonal terms
prevents the existence of global robustness but applying expectation
operators, they can be considered negligible.

Following along the lines of the analysis in [8], we can conclude
convergence in the MSE sense as long as µ

k

= µ

a,k

= µ

b,k

0 < µ

k

<

2

kˆy
k

k22 + kˆz
k

k22
. (13)

Complexity The algorithmic complexity can be well below the
standard complexity of 2M . As the update equations only re-
quire M

a

+ M

b

operations, lots can be saved. Let us assume that
M = 2

2k, then the optimal partitioning would be M

a

= M

b

= 2

k

and we save 2

k�1 operations, thus we roughly reduce the complex-
ity from M to

p
M . But also the computation in the error term can

significantly be reduced from M operations if the filter structure
is transversal. Operating in a block mode of M

a

(M

b

) steps can
save considerable complexity. Although such a block mode reduces
learning speed, the strong increase in learning due to separability
may compensate easily for this effect.

Extensions The algorithm shown here only requires a two-way ten-
sor, that is a matrix. Nevertheless, extensions to arbitrary n-way
tensors are straightforward. Take for example a system impulse re-
sponse described by a three-way tensor. The output sequence reads

y

k

=

Mc�1X

n=0

Mb�1X

m=0

Ma�1X

l=0

a

l

b

m

c

n

x

k�(m+Mbl+MaMbn). (14)

The regression vectors are simply obtained by a double convolution,
omitting the term in (14) for which the gradient is to be computed,
e.g., the corresponding terms to compute the b partitions are ob-
tained by omitting the summation over m. In the following results,
we present one experiment with a three-way tensor; the MATLAB
code is freely available [23].
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Fig. 1. Typical impulse response with M = 1024 taps.

4. EXPERIMENTAL RESULTS

In our first Monte Carlo (MC) example we consider M = 1024

weights to estimate. The reference model is based on a Kronecker
product of M

a

= M

b

= 32 taps each. One set is exponentially de-
caying: b

k

= 0.9

k

; k = 0, 1, ..., 31, while the other (a) is selected
randomly from N(0, 1). By this we generate independent impulse
responses for each MC run. Figure 1 depicts a typical impulse re-
sponse. We average our results over 10 MC runs. The input sig-
nal x

k

is simply from N(0, 1). We add noise from N(0, N

o

) with
N

o

= 10

�2 power at the observed desired signal. We apply a nor-
malized step-size µ

k

= ↵/[kˆy
k

k22 + kˆz
k

k22] and vary ↵ 2 (0, 2).
For all step-sizes in this range we obtain stable behavior. Note that
the filter taps need to be initialized with non-zero values as otherwise
the adaptive filter stalls. Their actual initial values are uncritical. We
simply set ˆa0,1 =

ˆ

b0,1 = 1, i.e., their first value to one.
For our first experiment we depict the obtained relative system

mismatch kv � ˆ

v

k

k22/kvk22 over the iterations k of the tensor LMS
for a step-size ↵ = 1 (fastest learning for LMS) and compare to the
standard LMS algorithm. Figure 2 exhibits the mismatch. As in the
standard LMS algorithm the maximal speed is obtained for ↵ = 1

and the learning roughly 20dB/5[M

a

+M

b

]. The steady state values
for both algorithms show similar values at the same step-size ↵.

In our second example we add more realism by adding a part to
the impulse response that is not separable. We achieve this goal by
reusing the setup of our first experiment but randomly add impulse
response values from N(0, 10

�4
). Figure 3 shows an example of an

impulse response together with the part that is estimated by the sep-
arable LMS algorithm. Figure 4 depicts the corresponding relative
system mismatch. Due to the system mismatch only the separable
part can be identified. The steady state gets stuck at around 13dB
higher values than before, even a bit more than the theoretically ex-
pected 11dB from steady state analysis. The learning of this first
part is, however, considerably faster than a classic LMS solution. A
further improvement could be obtained by using the tensor structure
for initial quick learning and then switching to a more general filter
structure. Such combinations of filters with different learning speed
have been proposed [24] in form of convex combiners.

Finally in our last example, we show a three-way tensor LMS
algorithm for which we selected a = [0, ..., 0, 1, 0] 2 IR

32⇥1
, c

k

=

0.9

k

; k = 0, 1, ..., 7 and b 2 IR

4⇥1 with randomly selected values
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Fig. 2. Relative system mismatch for M = 1024 taps.
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Fig. 3. Typical impulse response (not perfectly separable) with M =

1024 taps.

for each MC run. This setup nicely resembles a telephone hybrid
causing electrical echoes b after a certain long-distance delay de-
fined by the position of one in a and multiple roundtrip echoes. An
example of the impulse response is shown in Figure 5.

We compare the performance also with the PNLMS algo-
rithm [8, 9, 25] which typically comes with a complexity 3M , while
the tensor LMS algorithm runs in the order of 2(M

a

+M

b

+M

c

).
Due to space constraints the algorithm is not presented here but the
procedure can be downloaded from our web page [23]. Figure 6
depicts the relative system mismatch obtained after 100MC runs.

5. CONCLUSIONS

We proposed a novel gradient type algorithm for tensors. Exam-
ples of rank one two- and three-way tensors were presented. The
adaptive algorithm is of considerably less complexity than alterna-
tive algorithms and exhibits very rapid learning speed with compara-
ble steady-state quality. Even for systems that do not match perfectly
a rank one tensor, significant savings can be found. We presented the
idea only for real-valued signals; extensions to the complex-valued
case seem straight-forward.
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Fig. 4. Relative system mismatch (not perfectly separable) for M =

1024 taps.
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Fig. 5. Impulse response described by a rank one three-way tensor.
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tensor.
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