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ABSTRACT

Atomic norm denoising has been recently introduced as a
generalization of the Least Absolute Shrinkage and Selection
Operator (LASSO) to overcome the problem of off-grid pa-
rameters. The method has been found to possess many in-
teresting theoretical properties. However, its implementation
has been only discussed in a special case of spectral line es-
timation by uniform sampling. In this paper, we propose a
general numerical method to solve the atomic norm denois-
ing problem. The complexity of the proposed algorithm is
proportional to the complexity of a single-parameter search
in the parameter space and thus in many interesting cases, in-
cluding frequency estimation it enjoys fast realization.

Index Terms— Atomic norm, LASSO, multiple parame-
ter estimation, implementation

1. INTRODUCTION

Many problems concerning multiple parameter estimation
can be formulated as linear sparse estimation problems
and solved by the so-called compressive sensing techniques
[1, 2, 3]. These problems are commonly refered to as Atomic
Decomposition (AD) [4]. The Least Absolute Shrinkage
and Selection Operator is a good example of the AD solving
compressive sensing techniques. Many interesting properties,
such as guaranteed performance and robustness against model
uncertainty have been discovered for the LASSO [5, 6]. The
LASSO is convex. Hence, it can be implemented by effi-
cient convex optimization techniques [7, 5]. However, its
implementation usually involves discretizing the parameter
space and selecting from the resulting finite set of discretized
parameters, also called the grid [8].

The effect of discretization has been previously studied
[9]. It has been observed that when the true parameters are not
on the grid, multiple on-grid neighbor parameters are selected
by LASSO [10, 2]. In general, it is difficult to distinguish and
combine these estimates to achieve a consistent set of param-
eter estimates. This is known in the literature as the off-grid
problem. Different approaches to the off-grid problem have
been considered and discussed [11, 12, 13]. One promising
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approach, considered here is to generalize LASSO to admit a
continuum of parameters.

Recently, Atomic Norm DeNoising (ANDN) has been
introduced as a generalization of the LASSO, without a need
to discretize [14]. It has been shown that this approach inher-
its the LASSO properties [15, 14]. In fact, it can be shown
that the two are identical under any desired precision for a
sufficiently dense grid. In particular, this implies that ANDN
has a guaranteed performance but suffers resolution limit.
In [16, 14] an implementation of ANDN is considered for
the special case of frequency estimation by uniform samples,
which involves Semidefinie Programing, imposing a high
computational burden. An interesting generalization of this
approach to the same problem with some prior information
can be found in [17]. However, the general implementation
of ANDN has not been addressed yet.

In this paper, we propose a technique to implement
ANDN for a large group of AD problems. In particular,
we show that this algorithm converges to the exact solution
of ANDN and the computational complexity is proportional
to that of searching over the entire parameter space. Hence,
the complexity may be low if either the parameter space
is low dimensional, e.g. in the single-dimensional frequency
estimation problem, or the parameter space is well-structured.

Our approach is to show that the ANDN has a non-convex
parametric representation. However, a global optimality con-
dition for ANDN and thus for this specific non-convex repre-
sentation has already been introduced [18, 16, 14]. We show
that a simple correction of a cyclic coordinate descent based
implementation converges to a point satisfying the global op-
timality condition of ANDN. We demonstrate the numerical
results for the case of spectral line estimation with random
and fixed sampling schemes.

2. PROBLEM FORMULATION

Consider a set of m´dimensional candidate basis vectors
A Ă C

m, known as dictionary and a given data vector
x P Cm. Suppose that the data is obtained by the following
model:

x “ a1r1 ` a2r2 ` . . . ` anrn ` n, (1)
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where ak P A, rk ą 0 are real numbers and n is a random
centered Gaussian measurement noise vector with covariance
σ2I. The problem of interest herein is to retrieve the basis
vectors ak as well as the coefficients rk when the order n
is unknown. This is called the Atomic Decomposition (AD)
problem [14, 4]. A more familiar form of AD is when the data
model is given by

x “ b1s1 ` b2s2 ` . . . ` bnsn ` n, (2)

where sk P C and bk belongs to a dictionary B. However,
(2) can be simply written as (1) by defining rk “ |sk|, sk “
rke

jφk and ak “ bke
jφk . Then, the corresponding dictionary

in (1) is given by

A “ tbejφ | b P B, 0 ď φ ă 2πu. (3)

The AD problem, especially in its latter form in (2) has been
long addressed and discussed in different contexts. An inter-
ested reader is referred to [19, 20, 21] for more details. We
introduce the well-known example of spectral line estimation,
where the data x is obtained by sampling a continuous signal
at instants t1, t2, . . . , tm and the dictionary in the form of (2)
is given by

B “ tbpωq “ rejωt1 ejωt2 . . . ejωtm sT | ´W ď ω ď W u.
(4)

The parameter W is the system bandwidth. We remind that
the same problem can be written as (1) using the dictionary
given by (3).

The exact solution of AD is generally intractable for large
m or n, and the previous techniques do not guarantee such
an exact result. A more recent approach in the context of
AD is the ANDN, which is closely connected to the sparsity-
based linear estimation methods, especially LASSO. The ex-
act recovery by ANDN is well studied and many interesting
properties has been discovered. The ANDN is defined as the
optimization

min
yPCm

1

2
}x ´ y}22 ` λ}y}A (5)

where λ is a suitable positive number and the atomic norm
}y}A is defined as

}y}A “ min
n

min
a1,a2,...,an

min
r1,r2,...,rně0

r1 ` r2 ` . . . ` rn

s.t.

y “
nř

k“1

akrk (6)

We refer to the solution of (5) by ȳ. Replacing y by ȳ in (6),
we denote the parameters at the resulting optimal point by n̄,
āk and r̄k, respectively. These are the resulting estimates of
the ANDN approach.

Note that the order n is also variable. However, by the so-
called Caratheodory Theorem for convex hulls, it is possible

to show that (6) attains its minimum with n ď 2m. In fact,
it suffices to solve (6) only for a fixed order n ě 2m, since
a smaller order can be simply obtained by setting some pa-
rameters rk (e.g. the first ones) to zero. For the reasons later
discussed, we will fix n “ 2m ` 1, but for this section let us
discuss a variable n.

The optimization in (5) is convex. Thus, its Karush Kuhn
Tucker (KKT) condition implies global optimality. The cost
in (5) is nondifferentiable. Thus, its KKT condition can be
written as

x ´ ȳ P λB}ȳ}A (7)

where we remind that the parameters with bar denote the op-
timal point in (5) and (6). The subdifferential is given by [14]

B}ȳ}A “ tz | sup
aPA

�pzHaq ď 1, @k �pāHk zq “ 1u (8)

Convexity is not well-defined for (6) due to variable order, but
whenn is fixed the remaining optimization is non-convex. Let
us also rewrite (7) more explicitly as

sup
aPA

�pz̄Haq ď 1, @k �pāHk z̄q “ 1 (9)

where we define

z̄ “ x ´ ȳ “ x ´
n̄ÿ

k“1

āk r̄k (10)

The surprising fact about ANDN is that any set of parameters
tāk, r̄kun̄k“1 satisfying (9) provides a global optimum of (6)
[14, 18]. Note that neither (9) is the KKT condition of (6),
nor (6) is convex. Still, (9) provides the global optimality of
(6).

Due to (9), the bases ā can be found as the global maxima
of the function fpaq “ �pz̄Haq given ȳ. Together with a
technique to find ȳ, this constitutes the frequency estimation
method in [15]. However, the estimator of ȳ in [15] heavily
relies on the special structure of frequency estimation with
uniform samples (tk “ kT ) and cannot be generalized.

3. IMPLEMENTING ANDN

In this section, we develop a general algorithm which exactly
solves the ANDN, without relying on the structure of the dic-
tionary. We first substitute the definition of the atomic norm
(6) in (5) to obtain.

min
yPCm

min
n

min
a1,a2,...,an

min
r1,r2,...,rně0

1
2}x ´ y}22 ` λ

nř
k“1

rk

s.t.

y “
nř

k“1

akrk (11)

which can be simplified to

min
n

min
a1,a2,...,an

min
r1,r2,...,rně0

1

2
}x ´

nÿ
k“1

akrk}22 ` λ
nÿ

k“1

rk

(12)
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Next, note that the order can be fixed to 2m ` 1 as the so-
lution of ANDN satisfies n ď 2m. The smaller dimensions
are obtained by setting some elements of rk to zero. We ob-
tain the following non convex optimization problem, whose
global optimum, by the previous discussion, coincides with
ANDN. Hence, it is characterized by the optimality condition
in (9).

min
a1,a2,...,a2m`1

min
r1,r2,...,r2m`1ě0

1

2
}x´

2m`1ÿ
k“1

akrk}22`λ
2m`1ÿ
k“1

rk

(13)

3.1. Cyclic Coordinate Descent Algorithm

The optimization in (13) can be locally solved by a Cyclic
Coordinate Descent (CCD) technique [22]. CCD consists of
iteration cycles, where each pair of pal, rlq is updated at an in-
dividual iteration by solving (13), keeping the others constant.
In this case, the solution has the following closed form

âl “ argmax
aPA �paHzplqq, r̂l “ p�pâHl zplqq ´ λq`

}âl}22
(14)

where p. q` denotes the positive part function and

zplq “ x ´ ÿ
k‰l

akrk (15)

The CCD algorithm is summarized in Algorithm 1.

Algorithm 1 The CCD algorithm

Require: A starting point taku and trku.
repeat

for l “ 1 : n do
Replace pal, rlq with pâl, r̂lq in (14).

end for
until Convergence

Each iteration of CCD decreases the cost in (13). Thus,
the algorithm converges to a stopping point. It is not clear that
this stopping point is a global optimum, but remember that
this can be verified by the conditions in (9). In this manner,
the following theorem can be obtained.

Theorem 1. The stopping point of CCD consisting of the
parameters r̂1, r̂2, . . . , r̂2m`1 and â1, â2, . . . , â2m`1 satisfies
(9), and therefore is a global optimum of ANDN if at least one
of the elements r̂k is zero.

Proof. The stopping point is a local optimal point and satis-
fies the KKT condition for the minimization in (13), which
implies that " �pâHk ẑq “ 1 r̂k ą 0

�pâHk ẑq ď 1 r̂k “ 0
(16)

where

ẑ “ x ´
nÿ

k“1

âk r̂k (17)

Now, assume that r̂l “ 0. Note that in this case ẑplq “ ẑ. On
the other hand, updating pâl, r̂lq by (14) does not change the
pair, which implies that

max
aPA �paH ẑq “ max

aPA �paH ẑplqq ď λ (18)

and together with (16) shows that (7) holds.

3.2. Correcting CCD

We cannot generally establish global optimality of the CCD
algorithm, except when the stopping point contains an inac-
tive element. Now, we show that a different step can be added
to CCD, which ensures that the stopping point contains an in-
active element. Clearly, the additional step may not increase
the cost in (13), to provide convergence. In practice, we apply
this step after a fixed number L of CCD cycles.

Consider a step in the algorithm where the parameters are
given by tak, rku. Fixing taku, we update trku such that
at the same time

ř
k

rk does not increase,
ř
k

akrk does not

change and one of the parameters rk is set to zero. Then, the
cost in (13) does not increase. Hence, the combination of this
step with CCD converges to a stopping point of CCD, con-
taining a zero parameter. To do so, consider real parameters
uk such that at least one of them is nonzero and

nÿ
k“1

ukak “ 0
nÿ

k“1

uk ě 0 (19)

The choice n “ 2m`1 ensures existence of uk, which can be
obtained for example by the Gaussian elimination technique.
Then trlu is updated to

r̂l “ rl ´ αul (20)

where
α “ min

l|ulą0

ul

rl
(21)

If the minimum is achieved at index l0 then

α “ ul0

rl0
Ñ r̂l0 “ ul0 ´ αrl0 “ 0 (22)

This ensures that at least one element will be zero after the
updating procedure. Thus, the entire algorithm in Algorithm
2 stops at a point, where by Theorem 1 (9) holds. Thus, the
stopping point is a global optimal point of ANDN.

4. NUMERICAL RESULTS

Now, we examine our proposed Algorithm 2 in some exper-
imental scenarios. We consider the spectral line estimation
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Algorithm 2 The overall algorithm.
Require: A starting point, and the number of CCD cycles L.

repeat
Run L cycles of the CCD algorithm in Algorithm 1 to

obtain tak, rku.
Fix taku and replace trku by tr̂ku given in (20).

until Convergence
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Fig. 1. Cost value for the proposed algorithm compared to
SPICE at different iterations. The difference to the true opti-
mal value is plotted.

problem introduced in Section 2. The m sampling instants
are selected uniformly randomly in the time interval of r0ms,
which provides the average sampling rate of 1 sample/sec.
The correcting step in Algorithm 2 is applied after each L “
10 cycles of CCD. All techniques are implemented by MAT-
LAB.

We compare our technique to a fast grid based implemen-
tation of LASSO, called Sparse Parameter estimation by Iter-
ative Covariance Estimation (SPICE), which has interesting
numerical properties [23]. Figure 1 shows the resulting cost
during the iterative procedure versus the CPU runtime. The
number of samples was set to m “ 10. The true signal con-
sisted of two frequencies at 0, 4π{m. This choice guarantees
noiseless perfect recovery. The other parameters were cal-
culated such that the exact solution of ANDN could be pre-
dicted. In this manner, Figure 1 shows the difference to the
exact optimal cost in a logarithmic scale. As seen, SPICE is
initially faster than the proposed one, but then substantially
reduces speed. This is because the nearby highly coherent
atoms are difficult to be driven to zero. Note that due to dis-
cretization an error floor proportional to the number of grids
exists, but cannot be achieved in the depicted time interval.
It is also interesting to see that the proposed algorithm has a
stepwise behavior. This shows that the first iteration in each
cycle has a more prominent effect on the cost reduction.

In a different experiment we considered uniform samples,
where the SemiDefinite Programming (SDP) technique of
[15, 14] can be employed to exactly solve ANDN. Figure 2
shows the result for different values of m. Two frequencies
are again considered at 0, 5π{m and the other parameters are
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Fig. 2. Cost value for the proposed algorithm compared to
SDP with different number of observations. The difference to
the true optimal value is plotted.

properly selected. For the SDP approach, 1000 iterations of
the ADMM implementation in [14] was considered and the
total time was calculated. Then, the proposed algorithm was
applied for the equal time and the resulting final cost values
were compared. As seen, the SDP error diverges for larger
values of m. This implies that more iterations are needed for
larger m. The error of the current technique remains con-
stant. However, the runtime grows linearly with m, which is
not depicted, due to lack of space.

5. CONCLUSION

In this paper, we proposed a numerical algorithm to solve
ANDN. We introduced a parametric form of ANDN and in-
troduced a CCD algorithm to solve it. Then, we showed that
introducing an additional step guarantees convergence to the
global optimal point.

We compared our technique to SPICE and the SDP ap-
proach in [15, 14], in the context of spectral line estimation.
The latter only admits uniform samples. The former is more
general, but needs discretization. As shown here, the dis-
cretization not only introduces a quantization error, but also
reduces the convergence speed and precision. More investiga-
tion on similar implementation methods reveals that this gen-
erally holds for the so-called semi-parametric formulation,
where a large number of parameters are simultaneously op-
timized. In this case, the optimization over parameters with
a highly similar effect needs a very high numerical precision
and a considerable amount of computation. On the contrary,
our parametric form does not need such considerations. The
SDP approach is precise, but still has a higher computational
complexity compared to our technique.

The simple CCD step considered here is not generally re-
garded among the fastest possible optimization techniques.
Hence, it is suspected that more sophisticated correction steps
may increase the speed of the current technique. For example,
a derivative based approach such as the Newton method can
be examined. However, this is postponed to a future study.
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