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ABSTRACT

In our previous work we have presented an approach to learn in

terpretable classification rules using a Boolean compdessesing
formulation. Our approach uses a linear programming (LR)xre
ation and allows us to find interpretable (sparse) classificaules
that achieve good generalization accuracy. However, thaltieg
LP representation for problems with either a large numbesaof-
ples or large number of continuous features tends to becdrale ¢
lenging for off-the-shelf LP solvers. We have explored asning
approach which allows us to dramatically reduce the numbac-o
tive features without sacrificing optimality. In this workevexplore
reducing the number of samples in a sequential setting wiere
can certify reaching a near-optimal solution while onlyvaag the
LP on a small fraction of the available data points. In a batting
this approach can dramatically reduce the computatiomaptexity
of the rule-learning LP formulation. In an online setting derive
stochastic upper and lower bounds on the the LP objectivefeeen
samples. This allows early stopping when we detect thatldesic
fier will not change significantly with additional samplehéelupper
bounds are related to the learning curve literature in nmectdarn-
ing, and our lower bounds appear not to have been exploradllyi
we discuss a quick approach to compute the complete regaiianm
path balancing rule interpretability versus accuracy.

Index Terms— Linear programming duality, rule learning, row
sampling, sparse signal approximation, supervised fieesson

1. INTRODUCTION

One of the guiding principles for successful applicatiohsiachine
learning is Occam’s razor: among the models that are suggont
the data, pick the one that is the simplest. In addition taieng
that the observed empirical loss on the training set will ipad
predictor (generalize) to the error on the test set, keeghiagnodel
simple helps it to be interpretable, i.e. able to providaitin to the
human analysts examining it. We restrict ourselves to iokassi-
fication rules, and study the question of how much data iscseiffi
to learn a classification rule under a budget of interprétgbiln
particular, via linear programming (LP) duality theory vanaetect
when we have obtained a sufficient number of training exasmge
learn a near-optimal classification rule.

In recent work [1], a formulation for learning interpretallas-
sification rules was proposed based on tools of Boolean cesapd
sensing. Classification rules on their own are already antbag
most well accepted and trusted classification techniquesrégti-
tioners, precisely due to the insight they provide. The fdation
in [1] goes a step further by explicitly balancing the objess of in-
terpretability (as encoded by the sparsity in the numbegrohs used
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by the rule) versus classification accuracy, and modelsptioisiem

as a binary optimization problem with a Lasso-like LP reta@

We assume that we have access to a sequence of i.i.d. train-
ing samples (features and labels) for a binary classificatioblem.
This can be viewed either as an online classification settn@s

a way to obtain a near-optimal classification rule while eixdng
only a small subset of the data in a batch setting. By corisigler
the linear program based on the available samples as parigf a
ger LP based on all the available samples, we can develop apde
lower bounds on the objective function for the bigger LP byeea
fully extendinghe solution of the smaller LP. We consider two ways
to measure the duality gap, one for the stochastic settireyewve
compute the expected size of the duality gap, and anotherewine
can compute the duality gap exactly by an inexpensive ligean of
the remaining samples not used in the smaller LP.

In related work, thdearning curveliterature in machine learn-
ing [2-5] has considered how the generalization error @mbs a
function of the received number of samples. In the contexirdf-
nary (non-Boolean) compressed sensing, [6] has develagmpen-
tial tests to establish that a sufficient number of measunésreas
been obtained to recover the correct sparse signal (or disraie
approximation). A somewhat different flavor of reducing then-
ber of training samples for support vector machine clasgifio uses
screening techniques to identify those training samplatsate guar-
anteed to not join the support vector set [7]. Our previouskwo
on screening for Boolean compressed sensing-based ruténga
screened the features, not the training samples [8].

The outline of the paper is as follows: in Section 2 we revileg t
Boolean compressed sensing approach to learn interpeetktssi-
fication rules. Section 3 describes our formulation for otitey the
duality-based bounds on optimality in the batch settingoclSas-
tic bounds in the sequential setting are presented in Se&ib.
We present numerical experiments on large-scale machameiihg
datasets in Section 4 showing that one can obtain accurate ne
optimal interpretable classification rules while beingrtea only a
small subset of the training samples. We also describe hast-to
ficiently compute the solution path to balance accuracy atef-i
pretability and allow cost-sensitive classification in &tT5.

2. LEARNING INTERPRETABLE CLASSIFICATION
RULES VIA BOOLEAN COMPRESSED SENSING
Interpretable classification rules, such as:

e a breast cancer patient will not have long-term survivahd s
has greater than nine nodasd is greater than or equal to 40
years of agandis less than 60 years of age [9];

e an iris is of species versicolor if its petal is less than araq
to 5.350 cm in lengthand its petal is less than or equal to
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1.700 cm in widthand its petal is greater than 0.875 cm in
width [1]; and
e a salesman will voluntarily resign if his job role is spetyal

where the regularization parametertrades training error and the
sparsity ofw (sparsity provides generalizability and interpretabil-
ity), 1 is the vector of all ones of appropriate dimensighindexes

software sales reand his base salary is less than or equal to the set of positive training samples,indexes the set of zero-valued
$75,168and his months since promoted is less than or equalraining samplesA» andA z are the corresponding rows 4f, and

to 30 and his months since promoted is greater tharah@
his compensation plan is not quota-based [10],

are often more actionable and trusted by human decisionnsitiien
more opaque classification algorithm outputs (e.g. newetborks,
random forests) because they can be easily understoodL[], 9,

In [1], we posed the interpretable classification rule leagn
problem as one of Boolean compressed sensing (CS), wharh gt
to recover a sparse binary vector from a collection of bimasa-
surements which computes disjunctions of subsets of iteesrji2—
15]. Viewing these measurements as matrix multiplicatipra ti-
nary sensing matrix in the Boolean algebra, where disjoncaind
conjunction replace linear algebraic addition and muttgdion, es-
tablishes a close connection to traditional CS [16]. Spacsimes
into the rule learning formulation because the three temtise can-
cer survival example, the three terms in the botany exaraple the
five terms in the worker attrition example are selected frolarge
dictionary of potential terms. Non-zero entries in a spduis@ry
vector dictate which terms are included in the decision, raiel all
other potential terms correspond to zeros in the vector.

Formally, in the supervised classification problem, we arerg
m i.i.d. labeled training sample§x1,v1),. - ., (Xm, ym)}, Where
thex; € X are the features and thg € {0, 1} are the Boolean
labels. We would like to learn a functiof(-) : X — {0,1} that
will accurately generalize to classify unlabeled featwgetors drawn
from the same distribution as the training samples. We semte
individual Boolean terms derived from the features, sucipatsent
is less than 30 years of age,’ by functiong-) : X — {0,1}, 7 =
1,...
truth value for each of the terms, leading toranx n truth tableA
with entriesa;; = a;(x;). Writing the true labels of the training set
as avectoy € {0,1}™, we have:

y=AVw&n, (8]

wherew € {0,1}" is the sparse vector to be learned that indicates

which terms are included in the decision rule, ands noise that
flips some values through the exclusive disjunction opemnatiThe
notationy = A V w is shorthand for:

@)

n
yi:\/aij/\wj, z:l,,m
j=1

As in the standard sparse signal recovery problem, we woul

like to find w satisfying (1) while keepind|w||o and the noisen
small. Expressing the Boolean constragnt= A Vv w through or-
dinary linear equalities and inequalities, relaxing theproblem to
the ¢1 problem, relaxing the binary constraint on the vectoito

0 < w < 1, and introducing slack variables to account for noise,.

the rule learning problem is captured in the following LP: [1]

min En: wj + A f:fl
j=1 i=1

0<w; <1,5=1,...,n
0<&<1,ieP, 0<&,1€ Z
Apw+E€,>1

Azw =&,

(©)

s.t.

&5 and§ ; are the corresponding slack variables. When we con-
strain the variables in the LP in (3) to be binary, we get an integer
program (IP), which is the true problem to be solved; solvify
yields a lower bound on the optimal solution value of IP, ane o
can obtain an approximate solution to IP by rounding an cgltsn-
lution of LP, or an exact solution to IP via branch-and-baufitie
learned decision rulg(x), which is a conjunction of Boolean terms,
is obtained from the LP solutiow [1].

The LP becomes very large when the number of samplés
very large. We address this issue in this paper through rovpkag,
as discussed in the next section.

3. ROW SAMPLING

We describe how to find interpretable rules but avoid solwiagy
large LPs. Suppose that we have a large numbef samples avail-
able, and we believe that we can learn a near-optimal irgtaple
classifier from a much smaller subsetaf < m samples. We
proceed to develop a certificate which shows that wheis large
enough, the solution of the LP in (3) on the smaller subsetof-s
ples also achieves a near optimal solution on the full deta-s

To compare the solutions of LPs defined with different number
of samples, we divide the objective by the number of samples t
obtain error rates rather than raw errors. Also, as we haeisg8]
we can drop the upper bounds grand w without affecting the
solution:

,n. Then for each of the training samples, we can calculate the

) 1 n m
i A OBLED I @
Jj=1 i=1
st. 0<w;, 0<¢5,57=1,...,n,i=1,....m

APW+£7> >1
AzWZ&Z.

Let (W™, &™) and(w™, &™) be the optimal solutions for the small
LP with m samples, and large LP witlh samples in (4). Leff,
and f; be the corresponding (scaled) optimal objective valued, an
let f;, and f% be the corresponding IP optimal objective values.
e denote the data-matrices for small LPAsAp», Az and the
ata matrices for the large LP @ Ap, A z. The firstm rows of
A constituteA and the firstp entries ofAp form Ap. Since we
have error rates in the objective, we can compare objectliges
for different values ofn, and we have that,, — f» asm — m.

We would like to bound f. — f=| and| f,;, — fr| without solv-
ing the large LP and IP respectively. We consider two scesain

a deterministic scenario we allow a simple linear scan dveré-
maining samples that is much cheaper than solving the laPgedr
the stochastic scenario in Section 3.1 we receive a smalbatof
additional i.i.d. samples to evaluate the expected dughty. We
first consider the deterministic case and show how to extesgti-
mal and the dual solutions of the small LP and obtain both a&tow
and an upper bound on the solution of the large LP and IP.

To create a feasible primal solution for the large LP we can ex
tend the vectosv™ from the small LP by computing the associated
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Fig. 1. lllustration of upper and lower bounds on the rule-leagnin
LP and IP objective values for the UCI Adult classificatioraset.
We obtain tight bounds using only a small fraction of the data

errors on the large LREZ = Azw"™ and

{

This pair (W™, £€™) is feasible for the large LP and the objective
value provides an upper bound ¢r.. Similarly one can extend an
IP solution of the small IP and get an upper boundf$n

To find a lower bound orf;;, we extend the dual solution of the
small LP to give a feasible (but generally sub-optimal) cdaglition
of the large LP. Recall the dual formulation for the LP in (@here
w are the dual variables:

1 p
E max ZE::l i

0O<m<li=1...p

0
1

if Apw™ > 1

&r = otherwise.

(5)
s.t.
urAp < %1,1 +17A ;.

Suppose thaj”? is the optimal dual solution to the small LP.
Note that the number of variables in the dual for the large P i

creases fronp to p and the scale factor on the objective changes

from X to L.

We define a greedy heuristic (H1) to extepd to a feasible
dual solutioni” of the large LP; note that >°F_| fi; is a lower
bound on the large LP and IP optimal values, i.e.,fenand f%.
We setp; = i, for j = 1,..,p. We extend the remaining entries
ij forj = (p+1),..,p by setting a subset of its entries tavhile
satisfying(@?)” Ap < 17 Az which implies the dual feasibility
constraint. In other words the extensionm€torresponds to a subset
R of the row indices{p + 1, ..., p} of Ap such that a”)" Ap +
Yier(Ap)i < 1TAz. We initializeR to () and then simply go
through the unseen rows &fp in some fixed order (increasing from
p+ 1top), and for a rowk, if

(0" Ap+> (Ap)i+

i€ER

(Ap)r <17Az,

we setR to R U {k}. This first heuristic needs only a single pass
through the matrixA », and is thus very fast.

However, it does not use the optimal solutiéi* in any way.
Supposev™ were an optimal solution of the large LP. Then comple-
mentary slackness would imply that(iA»);w™ > 1, then in any
optimal dual solutionu, p; = 0. Thus, assumingv™ is close to an
optimal solution for the large LP, we modify heuristic H1 totain
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Fig. 2. lllustration of upper and lower bounds on the rule-leagnin
LP and IP objective values for the UCI Census-Income dataset

heuristic H2, by simply setting; = 0 whenever(Ap),w™ > 1,
while keeping the remaining steps unchanged.

3.1. Row Sampling: stochastic setting

Now suppose that we operate in an online setting where weezan r
quest additional i.i.d. samples, and we would like to declkuat
we are close to a stationary solution, i.e. that our solutidhnot
change much with additional samples. We describe how to atenp
expected upper bounds and expected lower bounds on theiebjec
value of the big LP. After receiving: samples we have learned a
classifier specified by rulé/™. We can compute the expected up-
per bound on the objective value of a larger LP by drawing alsma
numbern < m of additional validation samples, extending the pri-
mal solution to be feasible as we have done earlier, and a&tadu
the expected resulting errors. We consider the false pesitind
mis-detect errors separately};” | & = >,z & + D ep &i

For a fixedw,, the €5 errors follow an i.i.d. Bernoulli dis-
tribution, so we simply estimate the probability of error =
L 5 &i. We can use Agresti-Coull [17] confidence mtervals on
the sample binomial and its upper bound would correspontieo t
upper bound on thg, contribution to the objective.
The errors¢ ; in our model are in general not binary, and can
take positive integer values. Since we knéx", the values o 3
are bounded betweéhand ||w.||o. Hence we can use the Hoeffd-
ing inequality [18] to obtain a confidence interval on thetciiition
of £ ; to the objective. The expectatlonj% > icz &i- To obtain the
complete expectation of the objective of this feasible soifLto the
big LP (and its upper confidence bound) we simply ag|w™ |,
and these two terms.

To compute the expected lower bound we need to extend the
dual solution when we receive additional samples to satisfy

P
> wi(Ap) <1TAz — ()" Ap.
i=p+1
In the stochastic setting we do not knawz or Ap and can only
have access to the expectations. Instead of using the digsiston
described in Section 3, we use a simpler extension that isretas
analyze: we set; = min(c, 1) fori =p + 1, ..., p, where

(1TAz — (B")" Ap)i
(Ap)i

By construction this dual extension is feasible and pravide
lower bound on the optimal objective of the big L%: Sk =

c = min
K3
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Fig. 3. Solution path as a function affor the Adult data-set: trading
off classification error vs. size of the rule.

L (3, aF + (m — m)c). To estimate the expected valuecdnd

a confidence bound we can use the original samplel set m
by splitting it into non-overlapping blocks, and evalugtisam-
ple values ofc. Confidence bounds on can be obtained from
the sample-mean Chebyshev bound [19]. Note that since tiaik d
extension is not using’"* we can avoid drawing additional samples.

4. EMPIRICAL FINDINGS

In this section, we examine the applicability of the boundshave
developed on two large-scale binary classification dagdsein the
UCI Machine Learning Repository [20]. We consider the "Atlul
dataset withl01 features an@2560 training samples and the "Cen-
sus Income” dataset witB54 features andl 99522 training sam-
ples. After converting categorical features into binargli¢ators,
and thresholding continuous features withthresholds we obtain
310 and812 columns respectively in th& -matrices for the Adult
and Census-Income datasets respectively.

0.4

0.3

g 02 BTN = Total Errors
[ ~ - —
= L N g = ® = (-1 errors
S 01 o =n == 1-0 errors
] PPN e g

o #” LT T R

01 ; ; ; ; ; ; ; ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B

Fig. 4. Cost sensitive classification: number of false positivesd a
false negatives as a function 6f

regularization parameterin (4). A good choice oA is typically not
known a-priori, and it may be of interest to scan through @eaof
values of\. Furthermore, for cost-sensitive classification we would
like to quantify how the solution changes with varying coets
the false positive and false negative errors. This is accodated

by including a parametef with 0 < 8 < 1 and modifying the
objective function in (4):

%(%Zw,.mzjgm(l—ﬂ)zgi) (6)

i€P €2

For both of these problems it is important to have a practiegl to
quickly scan through a potential range ofand 5. For varying,
the optimal solution is a piecewise linear functionofvhich can

in principle be obtained by parametric linear programmifkar a
simpler practical approach, sensitivity analysis techegin linear
programming can be used. Suppose we obtain an optimal @oluti
to LP for one choice of using the simplex algorithm implementa-
tion of a modern LP solver such as CPLEX. Changhnigy a small
amount corresponds to changing the objective function byalls
amount. If the optimal solution to LP does not change, then_ fh

In Figure 1 we consider the smaller Adult dataset. We use regsolver can simply verify optimality by recomputing the dwattor

ularization parameteh = 1000. The full training set (our large

via one linear solve. If the optimal solution changes butrtbe so-

LP) hasm = 32560 samples, and we plot the various bounds as gution is close to the previous solution, then a small nuna@ivots

dashed line), and of the small LP, the upper bounds on bothRhe
and |P solutions for the full dataset, and the two dual bou¥dscan
see that the objective value of the small LP and both the LPIRnd
upper bounds quickly approach the objective value of tHé_fai(af-
ter about 2000 samples). The dual bounds improve with tithejta
slower than the upper bounds. The second dual extensionagpr
provides a much tighter lower bound.

In Figure 2 we consider the larger Census-Income datasat) ag

using A = 1000. Again we see that the small LP objective values

and the upper bounds quickly converge to the LP objectiveefil
dataset. The dual bounds improve with additional samplbsitat
a slower rate. The second dual extension heuristic doesrovide
a significant gain over the first heuristic for this examplet they

do provide very useful lower bounds. Remarkably, for bothl UC
examples the LP and IP solutions for the small LP are either th

same or very close, allowing quick integral solution viartmta and
bound. The same holds for the LP and IP upper bounds.

5. COMPUTING THE SOLUTION PATH

The BCS rule-learning framework trades off the sparsitytefin
pretability) of the rule with respect to its classificatiataracy by a

In Figure 3 and 4 we evaluate the regularization path as a func
tion of A and which allows to decide on the appropriate trade-off
between interpretability and classification erforand on the bal-
ance of the positive and negative errors. The solution tionete
entire parameter grid of00 values of\ (using CPLEX in Matlab)
with m = 5000 took 6.19 seconds, while the single slowesbn the
grid took0.53 seconds, showing the value of warm-starting.

6. CONCLUSION

We considered learning interpretable classification rulsing
Boolean compressed sensing. For large-scale classificptiab-
lems we showed how it is possible to guarantee a near-optimal
solution after training the classifier only on a small subsiethe
available samples. We confirmed the validity of our approach
large scale binary classification problems from the UCIemilbn.

1Adult dataset asks if a person is a high-earner. A single sutggests
the value of educatioreducation:Some-college Trukarger rules use many
features suggesting which jobs to avaitcupation:Handlers-cleaners False
and occupation:Other-service False and workclass:Fedgow False ...
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