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ABSTRACT

The literature on compressive parameter estimation has
been mostly focused on the use of sparsity dictionaries that
encode a sampling of the parameter space; these dictionaries,
however, suffer from coherence issues that must be controlled
for successful estimation. We propose the use of statistical pa-
rameter estimation methods within the approximate message
passing (AMP) algorithm for signal recovery. Our proposed
work leverages the recently highlighted connection between
statistical denoising methods and the thresholding step com-
monly used during recovery. As an example, we consider
line spectral estimation by leveraging the well-known Root
MUSIC algorithm. Numerical experiments show significant
improvements in estimation performance.

Index Terms— Compressive sensing, frequency-sparse
signals, spectral estimation, Approximate Message Passing
(AMP), Multiple Signal Classification (MUSIC)

1. INTRODUCTION

Compressive sensing (CS) describes a scheme for signal ac-
quisition that replaces the standard band-limitedness assump-
tion of uniform sampling with a sparsity assumption in order
to reduce the number of measurements [1, 2]. Here, sparsity
refers to the property that the signal has a compact represen-
tation in an appropriate basis or frame expansion. By lever-
aging the sparsity model, it is possible to recover the original
signal from a number of measurements that correspond to in-
ner products of the signal with a set of measurement vectors.
Commonly, these vectors have entries that are drawn from
a subgaussian random distribution, as this construction has
been shown to be suitable with very high probability. In cer-
tain cases, the measurement vectors are instead designed so
that they are incoherent with the sparsity basis or frame [3].

While most of the literature in CS has focused on the re-
covery of the observed signal from its measurements, there
has been growing interest in the past few years on the appli-
cation of CS concepts to parameter estimation problems. In
particular, several researchers have made efforts on the design
of measurement schemes and estimation algorithms that al-
low for accurate line spectral estimation from a small number
samples or measurements [4–12]. The line spectral estimation
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problem deals with signals that are linear combinations of a
small number of complex exponentials, and refers to the esti-
mation of the complex exponentials’ frequencies (and in some
cases, their magnitudes) from the observations obtained.

Many contributions in this regard have focused on the de-
sign of sparsity bases or frames that provide exact or approx-
imate sparse representations for the signals of interest and
whose elements are complex exponentials for a discrete set
of frequency values. However, due to the link between the
resolution provided by the dictionary and its coherence, most
work in this vein involves modifications to existing CS recov-
ery algorithms that control the coherence among the complex
exponentials present in the solution [4, 5, 7]. More recently,
it has been shown that for certain choices of sampling pat-
terns (either low-rate regular sampling or high-rate random
subsampling), one can recover a frequency-sparse signal from
a small set of samples when the frequencies involved are suf-
ficiently spaced apart by solving a clever reformulation of
the problem as a semidefinite program [9–12]. While such
optimization-based methods can achieve high precision, they
also have a high computational cost.

In this paper, we leverage recent variations to the well-
known approximate message passing (AMP) algorithm [13]
for CS recovery that allow for it to be extended to compres-
sive parameter estimation. The AMP algorithm is endowed
with performance guarantees due to the fact that it involves
the computation of a signal proxy whose probability distri-
bution matches that of the original signal observed under ad-
ditive white Gaussian noise (AWGN), thanks to the use of a
so-called Onsager correction term. AMP then leverages the
soft thresholding operation, which is commonly used in CS
recovery algorithms and can be shown to provide an opti-
mal denoiser for sparse vectors [14]. In fact, recent results
have shown that AMP can be adapted to recover signals un-
der arbitrary models simply by replacing the thresholding step
by a denoising step where, once again, the denoiser is de-
signed to act on AWGN-polluted observations of signals from
the model under consideration [15–17]. Following this pro-
gram, we propose the use of statistical parameter estimation
algorithms that are designed specifically for AWGN obser-
vations. Our proposed method replaces the soft threshold-
ing step by a custom “denoiser” consisting of a statistical pa-
rameter estimation algorithm followed by a signal synthesis
module based on the frequency estimates. While we focus on
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line spectral estimation and the Multiple Signal Classification
(MUSIC) statistical estimation algorithm in the developments
in this paper, our formulation is generic: it can be applied to
any parameter estimation problem as long as there exists a
statistical parameter estimation method designed for AWGN
observations that can be leveraged to provide a corresponding
compressive parameter estimation scheme.

Our paper is organized as follows. Section 2 provides ad-
ditional background on CS, line spectral estimation, and re-
cent efforts combining these two areas. Section 3 presents
in detail our proposed merging of AMP and statistical line
spectral estimation. Section 4 provides initial experimental
evidence of the improvements afforded by our proposed ap-
proach. Finally, Section 5 provides conclusions and direc-
tions for future work.

2. BACKGROUND AND RELATED WORK

Compressive Sensing: Consider a signal x ∈ CN with at
most K nonzero elements (i.e., ‖x‖0 ≤ K) and a measure-
ment matrixA ∈ CM×N with i.i.d. Gaussian elements, which
is then column-normalized. The measurement vector y =
Ax ∈ CM represents a compressive sensing (CS) acquisi-
tion of the signal when M � N . The overall goal of CS is
to recover x from its measurements y given knowledge of the
measurement matrix A.

As it turns out, one can successfully recover the signal
from the CS measurements by searching for the sparsest sig-
nal x such that y = Ax, as long as enough measurements are
taken. This can be done in a computationally feasible fash-
ion via linear programming, and this framework can be ex-
tended to include other optimization programs when the mea-
surements are noisy or quantized. An often faster alternative
is provided by a family of greedy algorithms, which itera-
tively look for increasingly more accurate approximations to
the search’s solution [18]. For example, iterative signal re-
covery using hard thresholding or soft thresholding proceeds
as follows with x0 = 0 and z0 = 0, at iteration t we set

xt+1 = ηt(A
Hzt + xt),

zt = y −Axt,

where xt ∈ CN and zt ∈ CM denote the signal estimation
and residual at iteration t, respectively, and ηt(.) are arbitrary
thresholding functions.
Approximate Message Passing: Notably, Donoho et al.
suggested a modification in the traditional iterative algorithm
based on the theory of belief propagation in graphical models,
adding an “Onsager” correction term to the algorithm [13].
The resulting first-order approximate message passing algo-
rithm (AMP) proceeds as follows:

xt+1 = ηt(A
Hzt + xt),

zt = y −Axt +
1

δ
zt−1〈η′t−1(AHzt−1 + xt−1)〉,

where η′t(s) = ∂
∂sηt(s) is the entry-wise derivative of

the function ηt(.), δ is a fixed constant, and for a vector
u =

[
u(1) . . . u(N)

]
we denote 〈u〉 = 1

N

∑N
i=1 u(i). It

can be shown that the Onsager term improves the sparsity-
undersampling tradeoff (cf. Section 5), yielding performance
that approximates that of optimization-based algorithms [13].
Line Spectral Estimation: Rather than studying sparse
time-domain signals, we focus on frequency-sparse signals
instead. Succinctly, these signals have a number of compo-
nent frequencies much smaller than their length. For these
signals, CS can be implemented using an appropriate basis,
such as the discrete Fourier transform (DFT) basis; CS then
attempts to find the sinusoid frequencies fk present in the
signal in addition to their corresponding amplitudes ak (for
k = 1, . . . ,K), so that the sparse signal can be represented as

x[i] =

K∑
k=1

ake
−j2πfkn/N , i = 1, . . . , N. (1)

The process of estimating the frequencies fk and ampli-
tudes ak from the signal samples x[i], known in the literature
as line spectral estimation, has a much longer history than
CS. There are many well-known line spectral estimation al-
gorithms [19, 20], including periodogram-based methods,
Thomson’s multi-taper method, eigenanalysis-based meth-
ods, etc. We will focus on eigenanalysis-based methods,
taking the multiple signal classification (MUSIC) [20] algo-
rithm as a specific example.

For the K-sparse signal x from (1), we consider obser-
vations s = x + n, where n ∼ N (0, σ2

nI) denotes a white
Gaussian noise vector. One can rewrite (1) as x = Γa, where
Γ is a matrix with columns Γ =

[
e(f1) . . . e(fK)

]
defined as

e(f) =
[
1 e

j2πf
N e

j2π2f
N . . . e

j2π(N−1)f
N

]T
,

and the vector of coefficients a =
[
a1 a2 . . . aK

]T
.

Therefore, s = Γa + n. The autocorrelation matrix for s
is defined as

Rss = E[ssH ] = Rxx +Rnn = ΓĀ2ΓH + σ2
nI (2)

where as Ā = diag(a) denotes the matrix diagonalization of
the vector a. Since rank(ΓĀ2ΓH) = K, it is easy to see that
Rxx has k nonzero eigenvalues {λ̃i}Ki=1 (sorted by magni-
tude), with all other eigenvalues equal to zero. Consequently,
for the sorted eigenvalues {λi}Ni=1 of Rss, we have

λi =

{
λ̃i + σ2

n, i ≤ K,
σ2
n, K < i ≤ N.

Defining G as the matrix containing the column eigenvectors
for the N − K smallest eigenvalues of Rss, we have that
RssG = σ2

nG, as the corresponding eigenvalues are all σ2
n;

thus, plugging in (2), we have that ΓA
2
ΓHG+ σ2

nG = σ2
nG,
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which in turn implies that ΓHG = 0. Thus, the frequencies
f ∈ {fk}Kk=1 are the only solutions to e(f)HGGHe(f) = 0.

In order to determine the component frequencies, MUSIC
searches for the peaks of the pseudospectrum function

PMUSIC(f) =
1

e(f)HGGHe(f)
, f ∈ [0, N).

In practice, MUSIC and other eigenanalysis-based meth-
ods operate on the sampled autocorrelation matrix R̂xx =
1
p

∑p
i=1 x̂ix̂

T
i , where x̂i =

[
x[i] . . . x[i+W − 1]

]T
de-

notes the ith window from x of length W (an algorithm
parameter), and p = N − W denotes the number of win-
dows present in x. Note that the window size should follow
W ∈ [K,N ] [20].

3. INTEGRATING LINE SPECTRAL ESTIMATION
AND APPROXIMATE MESSAGE PASSING

Recently, Donoho et al. have shown that the standard soft
thresholding function η(·) can be replaced by a signal-suitable
denoising operator within the AMP algorithm to iteratively
recover the signal from its measurements [13]. As motiva-
tion, they have shown that in each iteration of AMP, the proxy
AHzt +xt ≈ x+n, where n is i.i.d. additive white Gaussian
noise (AWGN) and the approximation is in terms of prob-
ability distributions [13, 15]. However, their work and later
derivations by other researchers [16, 17] has focused on sig-
nal recovery and denoising methods.

Our premise in this work is that the AMP extensions de-
scribed above can be taken further into compressive param-
eter estimation simply by leveraging statistical estimation al-
gorithms in place of the denoising methods mentioned above.
Once estimation is performed, it is simple to obtain a signal
estimate xt for the following iterations by using a generative
signal model that is based on the parameter values, such as
(1). Thus, in a nutshell, we propose a family of compressive
parameter estimation algorithms in which the denoising step
is replaced by the concatenation of a parameter estimation
step and a signal synthesis step.

Nonetheless, one quickly notices that the denoising term
also appears during the computation of the Onsager term at
each iteration. Luckily, recent work by Metzler et al. [17] has
provided a numerically simple algorithm for the estimation of
the Onsager term using Monte Carlo iterations: for an arbi-
trary denoiser D(x) acting on x, and using an i.i.d. random
vector b ∼ N (0, I), the divergence of the denoiser can be
approximated as

D′(x) = lim
ε→0

Eb
{
b∗
(
D(x+ εb)−D(x)

ε

)}
≈ E

(
1

ε
b∗(D(x+ εb)−D(x))

)
.

Generating L i.i.d. N (0, σ2I) vectors b1, . . . , bL with suffi-
ciently small variance σ2 = ε/N and computing L point es-

timates of the divergenceD′(x, bi) = b∗i (D(x+εbi)−D(x)),
the divergence can be estimated asD′(x) ≈ 1

L

∑L
i=1D

′(x, bi).
According to the weak law of large numbers, this estimate
converges to the real value as L→∞. The resulting recovery
algorithm is termed D-AMP in [17].

To showcase our framework, we introduce AMP+MUSIC,
a (D-)AMP-based compressive line spectral estimation algo-
rithm based on Root MUSIC, a variant of MUSIC. The
“denoiser” x̂ = DMUSIC(x) used for this setup is described
as follows:

{f̂k, âk}Kk=1 = MUSIC(x,K),

x̂[i] =

K∑
k=1

âke
−j2πf̂ki/N

for i = 1, . . . , N . Here MUSIC(x, k) denotes the application
of the Root MUSIC algorithm to the vector x, which returns
the frequencies {f̂m}km=1; the amplitude estimates {âm}km=1

can then be obtained, for example, by constructing the matrix
Γ corresponding to these estimated frequencies and comput-
ing â = Γ†x, where Γ† denotes the pseudoinverse of Γ.

We wrap our presentation by discussing practical aspects
of our approach. The values of L and ε in D-AMP are not
specified in the algorithm construction. Nonetheless, [17] dis-
cusses the robustness of the method to the choice of these pa-
rameters due to the high-dimensional nature of the data; in
fact, that paper sets L = 1 and ε = ‖x‖∞/1000. Our ex-
perimental results are consistent with this hypothesis, leading
us to set L = 2 and ε = 1/

√
N for all subsequent exper-

iments. Furthermore, the convergence criterion for AMP is
often unspecified; in practice, the accuracy of the estimates
increases with further iterations, and the algorithm is often
either executed for a fixed number of iterations or until sub-
sequent estimates have a negligible distance from one an-
other. In our experiments, we occasionally observed oscil-
latory non-monotonic behavior in the performance of the al-
gorithm through the iterations of AMP; we have found that
checking the accuracy of each iteration’s estimate against the
measurements by evaluating the measurement residual norm
‖y − Axt‖2 provides the algorithm with consistent accurate
estimation. Finally, the computational complexity of the algo-
rithm will depend on (i) the choice of statistical estimation al-
gorithm (Root MUSIC plus a pseudoinverse in our case, with
complexity O(N3)) and (ii) the number of Monte Carlo it-
erations to estimate the Onsager term; the remaining steps of
the D-AMP algorithm have complexity O(MN) ∼ O(N2).

4. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations that test the
performance of several line spectral estimation algorithms
that work from CS measurements. We consider frequency-
sparse signals of the form (1) of length N = 512 and mea-
surement matrices with variance σ2 = 1/M , where M is
the number of rows of the measurement matrix. We measure
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the frequency estimation error by computing the cost of the
Hungarian matching between the vectors containing the fre-
quency values and their estimates. In our experiments, we
compare the performance of AMP+MUSIC to that of several
alternative baselines: CS recovery followed by standard line
spectral estimation (AMP → MUSIC and `1-min. → MU-
SIC); IHT + MUSIC, which is akin to AMP+MUSIC with-
out the Onsager correction term, as proposed in [4]; and
band-exclusion interpolated subspace pursuit (BISP) [5], a
coherence-controlling sparsity-based algorithm. The iterative
algorithms are run for 20 iterations.

Our first experiment generates a phase transition plot for
spectral estimation, inspired by the recovery-based counter-
parts from [15, 21]. The phase transition plot of a given re-
covery algorithm finds the maximum value of the normalized
sparsity ρ = K/M , as a function of the normalized measure-
ment rate δ = M/N , for which the algorithm successfully
recovers a sparse signal at least 50% of the time for a set of
signals drawn at random from a uniform distribution over K-
sparse signals. The plot is usually interpreted as showing the
division between the (δ, ρ) region for which the probability of
success goes to one as N → ∞ (below the curve) from the
(δ, ρ) region for which the probability of success goes to zero
as N →∞ (above the curve).

For our algorithm’s phase transition plot, we define suc-
cess as having an average frequency estimation error (over the
k frequencies) of up to 1 Hz. For each value of the (δ, ρ) du-
plet, we execute 100 trials with randomly drawn frequencies
(uniformly at random in [0, N), with arbitrary resolution),
amplitudes (uniformly at random in [0, 1]), and measure-
ment matrices. Figure 1 shows the line spectral estimation
phase transition for our proposed AMP+MUSIC algorithm
and the aforementioned baselines, where the AMP+MUSIC
algorithm achieves noticeably better performance, i.e., much
higher ρ for each value of δ. This result implies that the
combination of the use of statistical estimation and the use
of the Onsager correction term provides gains in compressive
parameter estimation that are as significant as those achieved
in signal recovery by the denoiser-based (D-)AMP.

Our second experiment compares the performance of the
different algorithms among randomly drawn signals under the
same probability model as the first experiment. In this case,
we fix the number of frequencies K = 8 and evaluate the
average frequency estimation error as a function of the num-
ber of measurements n over the same 100 trials for each of
the compressive parameter estimation algorithms. Figure 2
shows once again that the performance of AMP+MUSIC is
significantly improved over those of its baseline counterparts.

5. CONCLUSIONS AND FUTURE WORK

We have introduced a new scheme for compressive parame-
ter estimation that leverages existing statistical parameter es-
timation algorithms within the approximate message passing
framework. In particular, we have focused on the example
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Fig. 1. Phase transition plot for compressive line spectral es-
timation. The performance of AMP+MUSIC is significantly
better than that of all baseline counterparts.
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Fig. 2. Average frequency estimation error for several com-
pressive line spectral estimation algorithms. Once again, the
performance of AMP+MUSIC is significantly better than that
of its baseline counterparts.

of line spectral estimation by leveraging the MUSIC algo-
rithm. Our formulation is feasible thanks to a numerical esti-
mation method for AMP’s Onsager correction term that lever-
ages Monte Carlo approximation. Our experimental results
showcase the considerable improvements in estimation per-
formance when measured both via a phase transition curve
and via the average frequency estimation error, showing that
AMP+MUSIC can potentially enable significantly higher CS
compression while achieving accurate frequency estimation.

While we have focused on a single parameter estima-
tion problem, our broader compressive parameter estimation
scheme could be used in many other applications for which
statistical methods are well established. Examples of such
compressive parameter estimation applications include time
delay estimation [22], localization [23, 24], direction of ar-
rival estimation [25, 26], etc. We also plan to adapt the anal-
ysis framework for AMP, which employs a so-called state
evolution formalism [15, 17], to our proposed framework.
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