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ABSTRACT
We consider ill-posed linear inverse problems involving the
estimation of structured sparse signals. When the sensing ma-
trix has i.i.d. standard normal entries, there is a full-fledged
theory on the sample complexity and robustness properties.
In this work, we propose a way of making use of this the-
ory to get good bounds for the i.i.d. Bernoulli ensemble. We
first provide a deterministic relation between the two ensem-
bles that relates the restricted singular values. Then, we show
how one can get non-asymptotic results with small constants
for the Bernoulli ensemble. While our discussion focuses on
Bernoulli measurements, the main idea can be extended to
any discrete distribution with little difficulty.

Index Terms— compressed sensing, sample complexity,
gaussian processes, restricted singular value

1. INTRODUCTION

Suppose we wish to recover a structured sparse signal x0 ∈
Rn from underdetermined linear observations Ax0 ∈ Rm.
Typically, one can minimize a suitable convex penalty f(·)
(such as `1-norm) and solve

x̂ = arg min
x
f(x) subject to Ax = Ax0. (1.1)

The question of interest is often the sample complexity, i.e.,
the number of measurements to reliably estimate the true sig-
nal via (1.1). The Gaussian ensemble has particular impor-
tance in understanding the behavior of low-dimensional rep-
resentation problems such as (1.1). Starting from the initial
works of Donoho and Tanner [1,2], the recent literature made
it clear that one can take advantage of the powerful results
on Gaussian processes to precisely predict the performance
of (1.1) [3, 4]. The results on the noiseless problem were also
extended to the related problems such as convergence rates
in the noisy setup and recovery from sparse corruption [5–8].
While Gaussian ensemble enjoys an abundance of results the
same cannot be said for other ensembles such as the subsam-
pled Discrete Fourier Transform. Our interest in this work is
to lay out a framework to obtain results for i.i.d. nongaus-
sian measurements by constructing a proper measure of sim-
ilarity to the Gaussian measurements. We will restrict our

attention to symmetric Bernoulli (i.e. Rademacher) measure-
ments, which are equally likely to be +1 and −1. However,
the proposed framework can be extended from Bernoulli to
other discrete distributions without much effort. Focusing on
Bernoulli measurements will make our results cleaner and ar-
guably more elegant. Bernoulli measurement ensemble is in-
teresting in its own right as it is advantageous both from com-
putation and storage points of view [9, 10].

We show that Bernoulli measurements can be used for lin-
ear inverse problems in a similar manner to Gaussian’s by
paying a price of constant multiplier in front of the Gaus-
sian sample complexity. This is along the lines of the re-
cent work of Tropp [11], which provide similar guarantees
for the subgaussian ensemble up to unknown constants. [11]
uses bounds on nonnegative empirical processes developed
by Mendelson et al. as the core technical tool [12, 13]. The
reader is also referred to the work by Plan and Vershynin [14]
for inherently related results where one observes one-bit mea-
surements sign(Ax0). Unlike our setup, one-bit observations
do not allow for the exact recovery of the signal, however, the
authors are able to show that good estimation performance is
achievable while undersampling proportional to the sparsity.
Compared to these, we present a novel strategy that allows
us to measure the similarity between two distributions, which
yields explicit constants. We are also able to move beyond the
standard problem (1.1) to its variations such as the noisy es-
timation and estimation under outliers. To start the technical
discussion, let us define the restricted singular value, which
will be crucial for our exposition.

Definition 1.1 (Restricted Singular Value). Given a nonempty
and nonzero cone C ⊂ Rn and a matrix A ∈ Rm×n, the
minimum and maximum restricted singular values of A at C
are respectively defined as

σC(A) = min
v∈C,‖v‖=1

‖Av‖2, ΣC(A) = max
v∈C,‖v‖=1

‖Av‖2.

Observe that these quantities reduces to usual minimum
and maximum singular value when C = Rn. To give an ini-
tial intuition, we start with a basic comparison between a ma-
trix with independentN (0, 1) entries and one with symmetric
Bernoulli entries.
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Proposition 1.1. Let C ⊂ Rn be a nonempty, closed cone. Let
G ∈ Rm×n and B ∈ Rm×n be matrices with independent
N (0, 1) and symmetric Bernoulli entries respectively. Sup-
pose, for some ε1, ε2 > 0, we have

(1− ε1)m ≤ Eσ2
C(G) ≤ EΣ2

C(G) ≤ (1 + ε2)m. (1.2)

Then, we also have

(1− π

2
ε1)m ≤ Eσ2

C(B) ≤ EΣ2
C(B) ≤ (1 +

π

2
ε2)m.

Observe that, if C is a line i.e. C = {αv
∣∣ α ∈ R} for

some v ∈ Rn, the RSV’s are trivially equal to m as we have

E ‖Gv‖22 = E ‖Bv‖22 = m‖v‖22.

On the other hand, in general, it is nontrivial to estimate these
quantities. The RSV plays an important role in the analysis of
(1.1) and has been the subject of interest recently. A standard
example is when we let C to be the set of at most k sparse
vectors, i.e.

C = {v ∈ Rn
∣∣ ‖v‖0 ≤ k}.

In this case, the smallest possible ε in (1.2) effectively
corresponds to the k-Restricted Isometry Constant (RIC)
δk(G) of the Gaussian matrix G1. Hence, Proposition
1.1 deterministically relates the δk(G) and δk(B), namely,
δk(B) ≤ π

2 δk(G). Following from this initial observation, in
the remainder of the paper, we will outline the main idea and
illustrate its applications on (1.1) and its extensions. We note
that detailed results and some of the proofs will be deferred
to the technical report [15].

Notation: Given a probability density function (p.d.f) f(·),
mean(f) and var(f) will correspond to the mean and variance
of the associated random variable. The symbol ∼ should be
read “is distributed as”. The unit `2 ball and sphere will be
denoted by Bn−1 and Sn−1. If C is a cone in Rn, C̄ will
denote C ∩ Bn−1.

We will now describe how to establish a similarity be-
tween the symmetric Bernoulli and the standard normal dis-
tribution.

2. PROPORTIONAL MEAN DECOMPOSITION

Given a continuous density function fC and a discrete distri-
bution fD, we propose the following partitioning of the con-
tinuous distribution in terms of the discrete one.

Definition 2.1 (Proportional mean decomposition (PMD)).
Let fC and fD be probability distributions with zero-mean
and unit-variance. Suppose fD is a discrete distribution
with alphabet size of K, taking increasingly-ordered values

1RIC is a function of the matrix G and hence is a random variable. How-
ever, RIC of a Gaussian matrix would concentrate around its mean due to
Lipschitzness of RSV; hence it is safe to say δk(G) ≈ E[δk(G)].
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Fig. 1: PMD for the symmetric ternary distribution. In this
case, ν2

max = ν2
1 = ν2

3 ≈ 0.242, ν2
2 ≈ 0.143 and c2S ≈ 0.808.

Dashed black lines correspond to mean(fi).

{ai}Ki=1 ∈ R with probabilities {pi}Ki=1 where
∑K
i=1 pi = 1.

We say {fi}Ki=1 is a proportional mean decomposition of fC
with respect to fD with the similarity constant cS , if {fi}Ki=1’s
are probability distributions satisfying,

• fC =
∑K
i=1 pifi.

• mean(fi) = cSai for all 1 ≤ i ≤ K.

Additionally, define νi =
√

var(fi), νmax = max1≤i≤K νi
and νmin = min1≤i≤K νi.

2.1. Examples

To provide a better intuition, we provide examples on PMD
when fC ∼ N (0, 1).

• Suppose fD is symmetric Bernoulli ±1. Let

f1(x) =

√
2

π
exp(−x

2

2
) for x ≥ 0 and = 0 otherwise,

f2(x) =

√
2

π
exp(−x

2

2
) for x < 0 and = 0 otherwise.

Then c2S = 2
π and ν2

max = ν2
1 = ν2

2 = 1− 2
π .

• Figure 1 describes the symmetric ternary distribution
fD = 1

4δ(x+
√

2)+ 1
2δ(x)+ 1

4δ(x−
√

2) with maximal
similarity cS . Here δ(·) is the Dirac delta function.

PMD satisfies the following properties [15].

Lemma 2.1. Consider the setup in Definition 2.1.

• The set of achievable similarity constants cS is convex
and contains 0.

•
∑K
i=1 piν

2
i = 1− c2S .
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• Suppose xD ∈ R is distributed with fD. Define xC
conditioned on xD as follows,

xC ∼ fi iff xD = ai for 1 ≤ i ≤ K.

Then xC ∼ fC almost everywhere. Furthermore, xC −
cSxD has variance 1−c2S and conditioned on xD, xC−
cSxD is zero-mean.

2.2. From scalar variables to i.i.d matrices

Our aim is to use PMD to obtain results on random matrices.

Definition 2.2 (Sensing matrices). Consider Definition 2.1.
Let D ∈ Rm×n be a matrix with i.i.d entries distributed as
fD. Let C be a matrix satisfying,

Ci,j ∼ fk if Di,j = ak, ∀ k ≤ K, i ≤ m, j ≤ n.

The following proposition provides an initial motivation
for the PMD.

Proposition 2.1 (Bound in Expectation). Suppose D and C
are as defined above. Then, for any nonempty and closed cone
C ⊂ Rn

• E[σ2
C(D)] ≥ 1

c2S

(
E[σ2
C(C)]− ν2

maxm
)
,

• E[Σ2
C(D)] ≤ 1

c2S

(
E[Σ2

C(C)]− ν2
minm

)
.

Proof. To prove the first statement, given D and C, let

v̂ = arg min
v∈C∩Sn−1

‖Dv‖2,

where Sn−1 is the unit `2 sphere. Conditioned on D, v̂
is fixed and C − cSD has independent, zero-mean entries.
Hence,

EC|D[‖Cv̂‖22] = ‖cSDv̂‖22+EC|D[‖(C−cSD)v̂‖22]. (2.1)

Since v̂ has unit length and the entries of C− cSD has vari-
ance at most ν2

max, EC|D[‖(C−cSD)v̂‖22] ≤ ν2
maxm. Hence,

taking the expectation over D, we find,

E[σ2
C(C)] ≤ E[‖Cv̂‖22] ≤ c2S E[σ2

C(D)] + ν2
maxm. (2.2)

To prove the second statement, let v̂ = arg maxv∈C∩Sn−1

‖Dv‖2 and observe that EC|D[‖(C − cSD)v̂‖22] ≥ ν2
minm.

Now, we again use (2.1) and replace (2.2) with E[Σ2
C(C)] ≥

E[‖Cv̂‖22] ≥ c2S E[Σ2
C(D)] + ν2

minm.

2.3. Proof of Proposition 1.1

We are in a position to prove Proposition 1.1; which is essen-
tially a corollary of Proposition 2.1. For fC ∼ N (0, 1) and
fD is symmetric Bernoulli, we have c2S = 2

π , ν2
max = ν2

min =
1− 2

π . Hence, if E[σ2
C(C)] ≥ (1− ε1)m,

E[σ2
C(D)] ≥

(1− ε1)m− (1− 2
π )m

2
π

= (1− π

2
ε1)m.

Similarly, using E[Σ2
C(C)] ≤ (1 + ε2)m,

E[Σ2
C(D)] ≤

(1 + ε2)m− (1− 2
π )m

2
π

= (1 +
π

2
ε2)m.

Remark: Proposition 2.1 considers the crude bounds involv-
ing ν2

min and ν2
max in the statements. In fact, one can always

replace them with 1 − c2S by moving from a deterministic
statement to a probabilistic one (conditioned on D). This can
be done by arguing that, with high probability (for sufficiently
largem), each ai occurs at most (1+ε′)mpi times at each col-
umn of D. For such D’s, the expected energy of each column
of C−cSD can be upper bounded by (1+ε′)m(1−c2S). One
can similarly obtain lower bounds on the column lengths with
(1 − ε′) multiplicity and then repeat the argument in Propo-
sition 2.1 to get results that hold with high probability over
D. Focusing on Rademacher’s shorten our discussion and we
end up with cleaner results.

3. ON THE SAMPLE COMPLEXITY OF
BERNOULLI ENSEMBLE

We will obtain results for Bernoulli matrices by using Gaus-
sian Min-Max Theorem due to Gordon [16]. We first state a
standard result that relates RSV to the sharp recovery condi-
tions of (1.1).

Proposition 3.1. Let f be a continuous and convex function
and Tf (x0) be the tangent cone of f at x0, i.e., the closure of
the set {αv

∣∣ f(x0 + v) ≤ f(x0), α ≥ 0}. x0 is the unique
solution to (1.1) if σTf (x0)(A) > 0.

The next proposition is essentially identical to Lemma 3.1
of [16] and can be derived from the minimax inequality for the
Gaussian processes.

Proposition 3.2 (Gordon’s inequality, [4]). Let G ∈ Rm×n,
g ∈ Rm,h ∈ Rn have i.i.d. standard standard normal en-
tries. Let C ⊂ Rn be a nonempty and closed cone. Then

E[min
x∈C̄
‖Gx‖] ≥

√
m− 1− ω(C̄),

where C̄ = C ∩ Bn−1 and ω(·) returns the Gaussian width of
a set: ω(S) = Eg∼N (0,In)[supv∈S 〈v,g〉].

In [4], Chandrasekaran et al. used this to conclude that
m∗ = (1 + o(1))ω(T̄f (x0))2 Gaussian samples are suffi-
cient for the success of (1.1). More recently, [3] showed the
tightness of bound, i.e. if m ≤ (1 − o(1))ω(T̄f (x0))2 (1.1)
fails. Furthermore, as

√
m − ω(T̄f (x0)) grows, lasso varia-

tion of (1.1) becomes robuster to noise [4, 5]. Our next result
provides a lower bound on the RSV of Bernoulli matrices in
terms of ω(C̄).
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Theorem 3.1 (Bounds for Bernoulli RSV). Let C ⊂ Rn be a
nonempty and closed cone. Suppose B ∈ Rm×n is a matrix
with i.i.d symmetric Bernoulli entries. Then, whenever

√
m ≥ 2.6

1−
√
ε

[ω(C̄) + 1],

we have that E[σ2
C(B)] ≥ εm. Furthermore, for ε < 0.99,

σ2
C(B) ≥ εm with probability 1− exp(− t

2

2 ) if

√
m ≥ 2.6

1−
√
ε

(ω(C̄) + t+ 4).

Proof. The proof is based on combining the Gordon’s in-
equality with Proposition 2.1. From Proposition 3.2, we have
that

E[σ2
C(G)] ≥ E[σC(G)]2 ≥ (γm − ω(C̄))2.

From Proposition 2.1, we have [E[σ2
C(B)]] ≥ εm, whenever

E[σ2
C(G)] ≥ 2

π
εm+ (1− 2

π
)m

Hence, we need to ensure

(
√
m− 1− ω(C̄))2 ≥ 2

π
εm+ (1− 2

π
)m.

This is further implied by
√
m ≥ ω(C̄)+1

1−
√

1− 2
π (1−ε)

. We now use

the fact that 1−
√

1− 2
π (1−ε)

1−
√
ε

is non-increasing as a function of
ε which can be seen by differentiation. Setting ε = 0 returns
2.6−1. The proof of second statement requires extra effort;
however follows similar lines.

Theorem 3.1 compares well with the sample complex-
ity of the Gaussian ensemble. In particular, instead of
ω(T̄f (x0))2, for a general discrete distribution, our bound on
the sample complexity takes the form ( 1

1−
√

1−c2S
)2ω(T̄f (x0))2

[15]. For Bernoulli matrices, substituting cS =
√

2/π we
find that 7 · ω(T̄f (x0))2 samples are sufficient for robust
recovery (ε > 0).

4. FURTHER EXTENSIONS

4.1. Application to sparse corruption

The usefulness of the PMD is not limited to the bounds on
sample complexity and noise robustness levels. For instance,
it is possible that, the original measurements Ax0 are cor-
rupted by a structured sparse signal s0 [6, 8, 17] so that y =
Ax0 +s0. To address this within our framework, consider the
constrained infimal deconvolution

(x̂, ŝ) = arg min
(x,s)

g(s) subject to y = Ax+s, f(x) ≤ f(x0).

(4.1)

Here the convex function g encourages the structure of s0 and
is usually the `1 norm. The optimality condition for (4.1) is
connected to a generalization of the restricted singular value,
where we consider σC,M(A) = minv∈C∩Sn−1 ‖ΠM(Av)‖2
and ΠM(·) is the projection operator to the additional cone
M. For this variation, we have the following result.

Theorem 4.1. Suppose that m ≥ (2.6 · ω(T̄f (x0)) + t +
4)2 +2.6 ·ω(T̄g(s0))2. Then, (x0, s0) is the unique minimizer
of (4.1) with probability 1− exp(− t

2

2 ).

On the other hand, the Gaussian bound requires ω(T̄f (x0))2

+ω(T̄g(s0))2 samples [6,8]. Hence, we pay an extra factor of
7 for the signal x0 and a factor of 2.6 for the corruption s0.

4.2. Bounds on the similarity constant

While the results are stated for Rademacher variables which
has cS =

√
2/π, not surprisingly, as the similarity toN (0, 1)

increases (cS → 1), our bound on the sample complexity
will approach ω(T̄f (x0))2. Given the distributions fC and
fD, calculation of cS can be cast as an optimization problem,
however, it is desirable to have an interpretable upper bound
on it. The following result gives such an upper bound in terms
of the tails of the distributions.

Proposition 4.1. Suppose fC and fD are distributions that
are symmetric around 0 and let xC ∼ fC , xD ∼ fD. Then

cS ≥ inf
i≥dK2 e

P(xC ≥ ai)
P(xD ≥ ai)

To prove this, we inductively construct the functions
{fi}Ki=1 obeying the Definition 2.1. This bound provides a
connection between this work and the results of [11–13].

5. CONCLUDING REMARKS

We have introduced the “proportional mean decomposition”
as a way of capturing the similarity of one distribution to
another and discussed how it can be useful in compressed
sensing, especially when the measurement matrix has i.i.d
Bernoulli entries. While we are able to obtain small explicit
constants in Proposition 1.1 and Theorem 3.1, our basic ap-
proach fails to capture the universality phenomenon, which
is the common belief that, the sample complexities of vari-
ous measurement ensembles are asymptotically equal. This
remains as an important open question, which is partially an-
swered by Bayati et al. in the case of `1 minimization [18].
It would be also interesting to see whether the approach pre-
sented here can be extended to handle non i.i.d. ensembles
such as the subsampled random Fourier transform [9, 19].
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