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ABSTRACT

We study the problem of recovering sparse vectors given pos-
sibly erroneous support estimates. First, we provide neces-
sary and sufficient conditions for weighted `1 minimization
to successfully recovery all sparse signals whose support es-
timate is sufficiently accurate. We relate these conditions to
the analogous ones for `1 minimization, showing that they
are equivalent when the support estimate is 50% accurate but
that the weighted `1 conditions are easier to satisfy when the
support is more than 50% accurate. Second, to quantify this
improvement, we provide bounds on the number of Gaus-
sian measurements that ensure, with high probability, that
weighted `1 minimization succeeds. The resulting number of
measurements can be significantly less than what is needed
to ensure recovery via `1 minimization. Finally, we illustrate
our results via numerical experiments.

Index Terms— Compressed sensing, compressive sam-
pling, sparse approximation, `1 minimization, weighted `1
minimization, null space property

1. INTRODUCTION

Consider an arbitrary k-sparse signal in RN (i.e., a vector
x ∈ RN with at most k non-zero entries) and consider its
corresponding linear measurements y ∈ Rm with m < N ,
where

y = Ax. (1)

Compressed sensing [1, 2, 3] deals with recovering x from y,
knowing A, using tractable algorithms. For example, in the
compressed sensing context, the use of constrained `1 norm
minimization for the recovery of sparse signals is now stan-
dard, (see, e.g., [1, 2, 3]). One estimates x via x∗, the mini-
mizer of

min
z
‖z‖1 subject to y = Az. (2)

This is primarily due to (2) lending itself to efficient convex
optimization algorithms, and to the fact that when A is cho-
sen appropriately, all sufficiently sparse x can be recovered

from y by solving the `1 minimization problem [1, 2, 3]. In
particular, drawing the matrix at random from an appropri-
ate distribution suffices, with high probability. For example,
matrices whose entries are i.i.d. Gaussian random variables,
work when1 m & k log(N/k).

One property of the measurement matrixA that character-
izes sparse recovery from compressive measurements is the
null space property (NSP) (see, e.g., [4] ) defined below.

Definition 1. [4] A matrixA ∈ Rm×N is said to have the null
space property of order k and constant C if for any vector
h : Ah = 0, and for every index set T ⊂ {1 . . . N} with
|T | ≤ k and its set complement T c, we have

‖hT ‖1 ≤ C‖hT c‖1.

In this case, we say that A satisfies NSP(k,C).

A necessary and sufficient condition for the recovery
of any k-sparse vector x from y using (2) is for the ma-
trix A to satisfy NSP(k,C) with C < 1. Moreover, it can
be shown (see, e.g., [5, Section 9.4]) using tools developed
in [6, 7] and [8] that Gaussian random matrices satisfy the
null space property with probability greater than 1 − ε when
m > ck ln eN/k. Here, c depends on C and ε, but the
dependence is mild enough that c ≈ 8 is a reasonable approx-
imation when N is large and k/N is small. Such a bound is
essentially sharp. If a matrixA ∈ Rm×N guarantees recovery
of all k-sparse vectors x via `1 minimization (2), thenmmust
exceed c1k log( N

c2k
) for some appropriate constants c1 and c2

(see, e.g., [5, Theorem 10.11]).
Nevertheless, one may hope that in the presence of use-

ful information (such as a relatively accurate estimate of the
support of the sparse signal) that one may be able to signifi-
cantly reduce the number of measurements needed to guaran-
tee recovery. In fact, it is often the case in practice that sig-
nals exhibit structured support sets, or that an estimate of the
support can be identified (for example audio signals are low-
frequency, the support of the transform domain coefficients of

1We write x & y when x ≥ Cy for some constant independent of x and
y.
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videos does not change much from frame to frame). In this
paper, we analyze a recovery method that incorporates sup-
port information by replacing (2) with weighted `1 minimiza-
tion. Given a support estimate T̃ ⊂ {1, ..., N}, we estimate x
via the minimizer of the optimization problem

min
z

N∑
i=1

wi|zi| s.t. y = Az, with wi =

{
w ∈ [0, 1], i ∈ T̃

1, i ∈ T̃ c
.

(3)
The idea behind (3) is to choose w := (wi)

N
i=1 such that the

entries of x that are “expected” to be large, i.e., those on the
support estimate T̃ , are penalized less.

1.1. Prior work

Incorporating support estimates into algorithms for recover-
ing signals from compressed sensing measurements has been
studied in, e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Vaswani
and Lu [10, 11, 12] used a weighted `1 minimization approach
with zero weights on the known support. Their work derives
sufficient recovery conditions that are weaker than the anal-
ogous `1 minimization conditions of [2] when a large pro-
portion of the support is known. Jacques [13] extended these
results to deal with compressible signals and noisy measure-
ments. Friedlander et al. [15] considered applying non-zero
weights to the support estimate, further generalizing and re-
fining the results of Vaswani and Lu. They provided tighter
sufficient conditions for recovery, and their conditions de-
pended on the accuracy and size of the support estimate. Sub-
sequently, Mansour et al. [16] extended these results to the
case when multiple support estimates with varying accuracies
are available.

Using a different model for the support information, Kha-
jehnejad et al. [14] derive sufficient recovery conditions for
weighted `1 minimization to recover sparse signals from
compressed sensing measurements. In [14], one partitions
{1, . . . , N} to two sets and the entries of x supported on
each set have a fixed probability of being non-zero, albeit the
probabilities differ between the sets. Here the “support infor-
mation” consists of knowing the partition and probabilities.
Adopting the same model, Oymak et al. [17] derive bounds
on the the minimum number of Gaussian measurements re-
quired for successful recovery when the optimal weights are
chosen for each set. Their results are asymptotic in nature
and pertain to the non-uniform model where one fixes a signal
and draws the matrix at random. Here, every new instance of
the problem requires a new draw of the random measurement
matrix.

In this paper, we provide uniform recovery guarantees,
i.e., the matrix is drawn once and successful recovery is guar-
anteed (with high probability) for all sparse signals when suf-
ficiently accurate support information is available.

1.2. Notation

Throughout the paper, T̃ is the support estimate used in (3).
The size of T̃ is ρk for some ρ > 0 and the accuracy of T̃ is
α = |T̃∩T |

|T̃ |
. For an index set S ⊂ {1, ..., N} we define

Γs(S) :=
{
T ⊂ {1, ..., N} :

∣∣(S ∩ T c) ∪ (Sc ∩ T )
∣∣ ≤ s} .

We denote the restriction of the vector x to the indices in
T ⊂ {1, ..., N} by xT . Our results require that we introduce
a weighted non-uniform null space property.

Definition 2. Consider the sets T ⊂ {1 . . . N} with |T | ≤ k

and T̃ ∈ Γs

(
T
)
, and define S = (T̃ ∩ T c) ∪ (T̃ c ∩ T ). A

matrix A ∈ Rm×N is said to have the weighted nonuniform
null space property over the sets T and T̃ with constant C if
for any vector h : Ah = 0, we have

w‖hT ‖1 + (1− w)‖hS‖1 ≤ C‖hT c‖1,

In this case, we say A satisfies w-NSP(T, T̃ , C).

We also require a uniform version of the above definition.

Definition 3. A matrix A ∈ Rm×N is said to have the
weighted null space property with parameters k and s, and
constant C if for any vector h : Ah = 0, and for every index
set T ⊂ {1 . . . N} with |T | ≤ k and S ⊂ {1 . . . N} with
|S| ≤ s, we have

w‖hT ‖1 + (1− w)‖hS‖1 ≤ C‖hT c‖1.

In this case, we say A satisfies w-NSP(k, s, C).

Thus, the standard null space property NSP(k,C) can
be written as 1-NSP(k, k, C). Moreover, we note that there
should be no confusion between the notation used for the
weighted non-uniform and uniform null space properties, as
one pertains to subsets and the other to sizes of subsets.

2. RECOVERY GUARANTEES VIA THE WEIGHTED
NULL-SPACE PROPERTY

Our first main result is Theorem 4. 2

Theorem 4. Given a matrixA ∈ Rm×N , every k-sparse vec-
tor x ∈ RN is the unique solution to all optimization prob-
lems (3) with T̃ ∈ Γs

(
supp(x)

)
if and only if A satisfies w-

NSP(k, s, C) for some C < 1.

In particular, the theorem states that if A does not satisfy
w-NSP(k, s, C) for any C < 1, then there exists a k-sparse
vector x supported on some set T with Ax = y and a set

2Due to space limitations, we omit the proofs of our results. They
can be found in a technical report available at http://www.math.ucsd.edu/∼
rsaab/publications.htm and will be included in a journal version of this
manuscript.
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T̃ with |(T̃ ∩ T c) ∪ (T̃ c ∩ T )| ≤ s such that x is not the
unique minimizer of (3). On the other hand, if A satisfies
w-NSP(k, s, C) for some C < 1 then, every k-sparse vector
x is the unique minimizer of the optimization problem (3)
provided T̃ satisfies |(T̃ ∩T c)∪(T̃ c∩T )| ≤ s. Thus recovery
is guaranteed via (3) provided the support estimate is accurate
enough.

The following proposition shows that weighted `1 mini-
mization can guarantee recovery even when `1 minimization
cannot recover all k-sparse signals.

Proposition 5. Let A be an m × n matrix that satisfies
1-NSP(s, s, Cs) for some Cs < 1 as well as 1-NSP(k −
s, k−s, Ck−s) and 1-NSP(k, k, Ck) for some finiteCk−s, Ck.
Then, A satisfies w-NSP(k, s, C(w)), with

C(w) =
(1 + w)CsCk−s + Cs + wCk−s

1− CsCk−s
.

To see that Proposition 5 shows that weighted `1 mini-
mization can succeed where `1 minimization fails, first note
that if Ck > 1 then there exists a k-sparse signal that cannot
be recovered by `1 minimization. Moreover, if one chooses
w ≤ 1−2CsCk−s−Cs

Ck−s(Cs+1) and if Cs <
1

2Ck−s+1 then 0 ≤ C(w) <

1, so Theorem 4 guarantees that x is the minimizer of (3)
whenever T̃ ∈ Γs(T ), where T is the support of x. To fur-
ther illustrate the relationship between `1 minimization and
its weighted counterpart, we present a corollary of Theorem
4 and Proposition 5.

Corollary 6. The weighted null space property w-NSP(s, s, Cs)
and the standard null space property 1-NSP(s, s, Cs) are
equivalent.

Corollary 6 implies that weighted `1-minimization recov-
ers all s-sparse signals x from noise-free measurements Ax
given a support estimate that is 50% accurate if and only if `1
minimization recovers all s-sparse signals. To see this, note
that w-NSP(k, k, Ck), Ck < 1 guarantees via Theorem 4 that
every k-sparse vector x is the unique minimizer of (3) pro-
vided T̃ satisfies |(T̃ ∩T c)∪ (T̃ c∩T )| ≤ k. Define ρ := |T̃ |

k ;

since the accuracy of the support estimate, α := |T∩T̃ |
|T̃ |

≥

1/2, then |(T ∩ T̃ c) ∪ (T c ∩ T̃ )| = (1 + ρ− 2αρ)k ≤ k, so
we are done.

3. GAUSSIAN MATRICES

Our second main result deals with matrices A ∈ Rm×N

whose entries are i.i.d. Gaussian random variables, which we
refer to as Gaussian matrices. We establish a lower bound
on m above which these matrices satisfy the weighted null
space property (with high probability), and hence, guaran-
tee exact sparse recovery using weighted `1 minimization.
However, we begin with some simple observations to estab-
lish a rough lower bound on the number of measurements

necessary for weighted `1 minimization to guarantee exact
recovery. Observe that w-NSP(k, s, C) (with k > s) implies
1-NSP(s, s, C), i.e., the standard null space property of size s
(this can be seen from the definitions of the properties). Con-
sequently, w-NSP(k, s, C) guarantees recovery of all s sparse
signals via `1 minimization so it requires m ≥ c1s log( N

c2s
)

(see, e.g., [5, Theorem 10.11]). This may lead us to hope that
m ≈ s log N

s suffices for recovery given an accurate support
estimate because in weighted `1 minimization s plays the
role of the size of the support estimate’s error. However,
even if one had a perfect support estimate, k measurements
would still be needed to directly measure the entries on the
support. Combining these observations, we seek a bound on
the number of measurements that scales (up to constants) like
k + s log N

s . We begin with a non-uniform result (Theorem
7) whose proof consists of a suitably modified version of
the analogous proof for the standard null space property for
Gaussian matrices [19], cf., [5], [8]. Again, the details are
omitted for space considerations.

Theorem 7. Let T and T̃ be two subsets of {1, ..., N} with
|T | ≤ k and |(T ∩ T̃ c) ∪ (T c ∩ T̃ )| ≤ s ≤ k and let A be a
random matrix with independent standard Gaussian entries.
Then A satisfies w-NSP(T, T̃ , C) with probability exceeding
1− ε provided

m√
m+ 1

≥
√
s+ αρk +

( 1

2πe3

)1/4√ k

ln(eN/k)

+ C−1
√

2((w2 − 2w(1− α))ρk + s) ln(eN/k)

+
√

2 ln ε−1. (4)

Importantly, the theorem suggests that given a particular
support estimate accuracy α (which in turn governs the rela-
tionship between s and k), one should optimize w to minimize
the number of measurements in the theorem. Interestingly,
the optimal choice satisfies w = 1 − α, which agrees with
the intuition that a smaller weight should be applied when the
confidence in the support estimate is high, and vice versa.

Moreover, one can use Theorem 7, combined with a
counting argument and a union bound, to obtain a similar
result which this time holds uniformly for all k-sparse signals
supported on sets from Γs(T̃ ).

Corollary 8. Let T̃ be a subset of {1, ..., N} and let A
be a random matrix with independent standard Gaussian
entries. Then, with probability exceeding 1 − ε, A sat-
isfies w-NSP(T, T̃ , C) for all sets T ⊂ {1, .., , N} with
|T | ≤ k ≤ N/2 and |(T ∩ T̃ c)∪ (T c ∩ T̃ )| ≤ s ≤ k provided

m√
m+ 1

≥
(

1 +
1

(2πe3)1/4
√

ln(eN/k)

)√
k + s

+ C−1
√

2(w2k + s) ln(eN/k)

+
√

2 ln ε−1 + (s+ 1) ln(eN/s) + k. (5)
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Fig. 1. Phase transition diagrams showing exact recovery rates using weighted `1 minimization with weights applied to support
estimate sets T̃ with α = 0.3, 0.7 and w = 1 − α. The dashed red line corresponds to the empirical 0.85 success rate for
standard `1 minimization. The solid red lines are the 0.85 rate thresholds for weighted `1 minimization.

In the limiting case of large m,N, k with small k/N the
condition (5) simplifies to

m ≥ (
√
k + s+ C−1

√
2(w2k + s) ln(eN/k)

+
√

2 ln ε−1 + (s+ 1) ln(eN/s) + k)2,

which reveals the benefit of using weighted `1-minimization
in reducing the number of measurements. In particular, taking
w = 0 leads to the bound

m & k + (1 + C−2)s ln(eN/s),

which is essentially as good as one can hope for; one needs k
measurements to recover the non-zero entries even if the sup-
port was fully known, and about s ln(eN/s) measurements to
recover the entries where the support estimate was erroneous.
In particular, this bound can be significantly smaller than the
analogous m & (1 + C−1)2k ln eN/k of standard `1 mini-
mization [5] when s is significantly smaller than k, i.e., when
the support estimate is very accurate.

4. NUMERICAL EXPERIMENTS

We present numerical simulations to illustrate our theoretical
results. Throughout, we set N = 500 and draw m × N ma-
trices A with i.i.d. standard Gaussian random entries, with m
ranging between 50 and 250 in increments of 25. We generate
k-sparse signals x ∈ RN , and vary k between m

10 and m
2 in

increments of m
20 . The nonzero values in x are drawn indepen-

dently from a standard Gaussian distribution. We generate 50
instances ofA and x. For each instance, we compute the mea-
surement vector y = Ax and compare the recovery perfor-

mance of `1 and weighted `1 minimization. Specifically, sup-
port estimate sets T̃ of size k with accuracies α ∈ {0.3, 0.7}
are generated such that αk entries of T̃ are chosen at random
from the support of x. The remaining entries of T̃ are chosen
from outside the support of x. A weight w = 1−α is applied
to the set T̃ for weighted `1 minimization.

We illustrate the performance of weighted `1 minimiza-
tion in Figs. 1 (a)-(b), corresponding to support estimate ac-
curacies of α = 0.3, 0.7. The solid red lines indicate the 0.85
empirical recovery rate thresholds for each of the weighted `1
problems. Notice that the recovery thresholds of the weighted
`1 problems are shifted to the right compared to the standard
`1 recovery threshold (dashed red line) for values of α con-
sidered. Notice also that when α = 0.7, weighted `1 mini-
mization significantly outperforms standard `1.

5. CONCLUSION

In this paper, we defined a weighted null space property for
measurement matrices of sparse signals. We showed that
this property is necessary and sufficient to guarantee exact
recovery of sparse signals with prior support estimates us-
ing weighted `1 minimization. We also showed that when
the support estimate is at least 50% accurate, the weighted
null space property is easier to satisfy than the standard non-
weighted null space property. We then provided bounds
on the number of Gaussian measurements that satisfy the
weighted null space property, and consequently ensure with
high probability that weighted `1 minimization succeeds with
significantly fewer measurements than what is needed to
ensure recovery via `1 minimization.
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