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ABSTRACT

High dimensional data is often modeled as a linear combi-

nation of a sparse component, a low-rank component, and

noise. An example is a video sequence of a busy scene where

the background is the low-rank part and the foreground, e.g.

moving pedestrians, is the sparse part. Sparse and low rank

(SLR) matrix decomposition is a recent method that estimates

those components. In this paper we develop an l0 based SLR

method and an associated tuning parameter selection method

based on the extended Bayesian information criterion (EBIC)

method. In simulations the new algorithm is compared with

state of the art algorithms from the literature.

Index Terms— Sparse and Low Rank Matrix Decompo-

sition, Cyclic Descent, Extended BIC, l0 penalty.

1. INTRODUCTION

Due to ever increasing data acquisition capability in important

fields such as genomics, brain imaging, and remote sensing

the need for efficient algorithms for processing such data is

increasing. Usually such data is assumed to have some known

structure such as sparsity, positivity or smoothness.

A typical characteristic of high dimensional data is that

it lies, approximately, on a low dimensional linear subspace.

Many classical algorithms attempt to exploit that property,

e.g., principal component analysis [1], independent compo-

nent analysis [2], and sparse component analysis [3].

In the presence of large sparse noise, i.e., outliers, the

classical methods often break down. Motivated by this [4, 5]

introduced a noiseless sparse low rank decomposition (SLR)

method that decomposes the noiseless observed matrix into a

sum of a sparse matrix and a low rank matrix. Furthermore

they provided conditions for the exact recovery of those ma-

trices.

A limitation of these papers is that they focus on the noise-

less case since in real applications there is always some addi-

tive noise. The paper [6] provided a remedy and extended

the method to handle the noisy case. Other papers that treat

the noisy case include [7] that also handles the case of missing

data, [8] which developed a randomized estimation algorithm,
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and [9] that presents an SLR algorithm assuming structured

sparsity in the sparse matrix.

SLR has been found useful for a great variety of appli-

cations: [10] applies SLR for the separation of MRI images

into background and dynamic components; [11] develops a

SLR decomposition for alignment of images; [12] provides a

review of SLR methods and its applications.

In this paper we focus on the noisy SLR model and

present a novel method based on optimizing an l0 penalized

cost function where the l0 penalty is both used for enforcing

sparsity and low rank. This is different from [6, 7] which

focused on the l1 penalty to encourage sparsity of the sparse

component and a nuclear norm to enforce low rank. We

additionally developed an extended Bayesian information

criterion (EBIC) method [13] for the important problem of

selecting the tuning parameters that control the sparseness

and the rank. The tuning parameter problem was not treated

in [6, 7].

The paper is organized as follows. In section 2 we intro-

duce the SLR model, its associated estimation algorithm, and

the tuning parameter selection criterion. Section 3 presents a

simulation study and compares the new algorithm to compet-

ing methods. Finally, in section 4, conclusions are presented.

1.1. Notation

The Frobenius norm of a matrix X is denoted by ‖X‖2F =
∑T

t=1

∑M

v=1
xtv; ‖X‖1 =

∑T

t=1

∑M

v=1
|xtv| is the l1 norm

of a matrix X; ‖X‖0 =
∑T

t=1

∑M

v=1
I(xtv 6= 0), where

I(·) is the indicator function, is the l0 penalty of a matrix

X; Hh(·) is the hard thresholding operator and operates

elementwise on its input, i.e. the i,jth element of Hh(Y )
is Hh(Y )ij = ytvI(|ytv| ≥ h); similarly Sh(Y )ij =
max(|yij | − h, 0)sign(yij) is the soft thresholding opera-

tor.

2. SPARSE AND LOW RANK MODEL

The sparse and low rank model is given by

Y = L+X + ǫ (1)

where Y is a T ×M observed matrix, L is a low rank matrix

of rank r where r < min(T,M), X is a sparse matrix, and
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ǫ is additive noise where the elements are independent and

identically distributed zero-mean Gaussian random variables

with noise variance σ2. This model was treated in [6] which

developed the robust Principal Component Pursuit (RPCP)

method that is based on the following criterion:

J(L,X) =
1

2µ
‖Y −L−X‖2F + λ‖X‖1 + ‖L‖∗. (2)

The nuclear penalty ‖ · ‖∗ is simply an l1 penalty on the sin-

gular values of L and encourages L to be of low rank. In

this paper we enforce low rank in a different way and use the

property that a low rank matrix L can be written as a product

of two lower dimensional matrices AM×r and ST×r that are

of full rank r < min(T,M), i.e., L = SAT [14]. Based on

this idea we base our estimation on the following l0 penalized

least squares criterion:

minA,S,X
1

2
‖Y − SAT −X‖2F + h2

2
‖X‖0

s.t. ATA = Ir

(3)

where the constraint is added to ensure identifiability. We call

this problem SLR0. Below in the simulation section we will

also be concerned with the sparse low rank problem with l1
penalty:

minA,S,X
1

2
‖Y − SAT −X‖2F + h‖X‖1

s.t. ATA = Ir.
(4)

We call the l1 penalized problem SLR1. Notice that the dif-

ference between the form of the weight of the penalties in (3)

and (4) is to ensure that h has the same units as σ in both

cases.

2.1. Cyclic Descent

The optimization algorithm we use to solve (3) is a cyclic de-

scent (CD) algorithm [15]. The algorithm is based on the fol-

lowing three simple steps that are iterated until convergence

(subscript k is the iteration index):

X-step : Given Sk and Ak solve (3) w.r.t. X yielding

Xk+1 = argmin
X
J(Ak,Sk,X)

= Hh(Y − SkA
T
k )

where Hh(·) is the hard thresholding operator.

S-step : Given Xk+1, Ak solve (3) w.r.t. S yielding

Sk+1 = argmin
S
J(Ak,S,Xk+1)

= (Y −Xk+1)Ak

A-step : Given Xk+1, Sk+1 solve (3) w.r.t. A yielding

Ak+1 = argmin
A
J(A,Sk+1,Xk+1)

= P rQ
T
r

where PDQT = (Y − Xk+1)
TSk+1 is a singular

value decomposition (SVD) and P r,Qr denote matri-

ces consisting of the first r columns of P and Q respec-

tively.

We call the algorithm CD-SLR0 and summarize it as follows:

CD-SLR0

Input: Data matrix Y ,r and h

Initialization: A0 = 0 and S0 = 0

while (Not converged) do

Xk+1 = Hh(Y − SkA
T
k )

Sk+1 = (Y −Xk+1)Ak

PDQT = (Y −Xk+1)
TSk+1 (SVD)

Ak+1 = P rQ
T
r

Output: X̂ ,Ŝ and Â.

Remark 1. By construction the CD-SLR0 method ensures

monotonicity of the cost iterates, i.e.,

J(Ak,Sk,Xk) ≥ J(Ak,Sk,Xk+1)

≥ J(Ak,Sk+1,Xk+1)

≥ J(Ak+1,Sk+1,Xk+1) ≥ 0.

Remark 2. The CD-SLR1 method (4) is implemented by ex-

changing the soft thresholding operator for the hard thresh-

olding operator in the X step.

Remark 3. Notice that the S-step and the A-step can be

solved together using the fact that the solution of

Â, Ŝ = argmin
A,S‖R− SAT ‖2F

is Â = Qr and Ŝ = P rDr where Qr consists of the first r

left eigenvectors of R, P r consists of the first r right eigen-

vectors of R, and Dr is a diagonal matrix of the first r sin-

gular values of R. However this requires a costly SVD of a

T × M matrix while our algorithm only requires an SVD of

a smaller dimensional M × r matrix.

2.2. Tuning parameter selection

There are two tuning parameters in the CD-SLR0 model that

need to be selected, i.e., the rank r and the sparseness tuning

parameter h. Traditional methods for tuning parameter selec-

tion include AIC [16], BIC [17], and cross-validation [18].

They were all originally designed for selecting one discrete

parameter. However they can be easily modified for select-

ing multiple continuous and discrete parameters. Based on

our experiments with CD-SLR0 these methods select models

with too many false positives. Consequently we choose the

extended BIC (EBIC) [13] which is known to tightly control
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the false positive rate. We use EBIC similar to [19]:

EBICr,h = M log(σ̂2) +
1

T

‖Y − Ŝr,hÂ
T

r,h − X̂r,h‖
2
F

σ̂2

+
(log(T ) + 4α log(M))de(r, h)

T

where α ∈ [0, 1] and the effective dimensionality de(r, h) of

the model is given by

de(r, h) = Tr +Mr − r2 + ‖X̂r,h‖0.

Note that subscripts have been added on the estimates to em-

phasize their dependencies on the tuning parameter r, h. In

the examples below we use α = 0.5 and

σ̂2 =
1

TM
‖Y − ŜÂ

T
− X̂‖2F .

2.3. Performance evaluation

To evaluate the performance of our algorithm in the simula-

tions we use the true positive rate (TPR), false positive rate

(FPR), and the normalized mean-squared error (nMSE). Be-

fore defining FPR and TPR we need few preliminary defini-

tions. Define the null set Γ0 = {(t, v) : xt,v = 0}, the active

set Γa = {(t, v) : xt,v 6= 0}, Γ̂0 = {(t, v) : x̂t,v = 0} and

Γ̂a = {(t, v) : x̂t,v 6= 0}. True positive (TP) is defined as

TP = |Γa ∩ Γ̂a|, false negative (FN) as FN = |Γa ∩ Γ̂0| ,

false positive (FP) as FP = |Γ0 ∩ Γ̂a| and true negative (TN)

as TN = |Γ0 ∩ Γ̂0|, here | · | denotes the cardinality of the set.

Now TPR and FPR are defined as

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
. (6)

The nMSE is defined as

nMSE =
‖L− ŜÂ

T
+X − X̂‖2F

‖L+X‖2F
(7)

where L+X is the true signal and ŜÂ
T
+X̂ is the estimated

signal.

3. SIMULATION STUDY

In this section we compare the performance of CD-SLR0,

CD-SLR1 and RPCP (2) from [6] using an implementa-

tion from [20] which uses the accelerated proximal gra-

dient method. We simulate data according to (1) where

T = M = 200. The elements in the matrices A and S where

drawn from a Gaussian distribution N(0, 10 σ√
T
). The matrix

X is constructed such that 20 % of its elements are non-zero
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(c) σ = 0.5
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Fig. 1. First 40 elements in the first row of the matrices L,

X , and ǫ for four different values of the noise variance σ2.

(active), the non-zero elements are uniformly distributed be-

tween -5 and 5. Fig. 1 shows the first 40 elements in the first

row of the matrices L, X , and ǫ for four different values of

the noise variance σ2.

First we explored the variation of the nMSE (7), TPR (5),

and FPR (6) with the standard deviation of the noise σ. We

generated a grid of values of the tuning parameters r and h for

CD-SLR0 and CD-SLR1 and µ and λ for the RPCP method

and for each value of σ selected the tuning parameters based

on the lowest value of the nMSE. We note that selecting the

tuning parameters based on nMSE is unrealistic in practice

since it depends on a knowledge of the true signal. However,

this demonstrates the limits of performance in terms of nMSE.

Fig. 2 depicts the averaged (over 10 simulations) nMSE

(7), TPR (5), and FPR (6) for the three different algorithms

where the tuning parameters are selected based on the best

nMSE. The CD-SLR0 and CD-SLR1 methods both perform

better than RPCP in terms of nMSE, CD-SLR0 performs bet-

ter than CD-SLR1 for all values of σ expect σ = 1. Not

unexpectedly CD-SLR0 has the greatest sparsity, i.e. it has

lower TPR and FPR than the other methods.

Fig. 3 shows a box plot showing the rank selection for

each of the algorithm. The CD-SLR0 and CD-SLR1 methods

select the true rank all the time while on the other hand RPCP

slightly overestimates the rank at higher noise variance levels.

Fig. 4 show the nMSE, TPR, FPR for each of the method

in the more practical settings when the tuning parameters are

selected based on the EBIC. Here CD-SLR0 clearly outper-

forms the other methods in terms of the nMSE.
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(b) FPR

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Ideal model selection using nMSE

 

 

CD−SCA
0

RPCP

CD−SCA
1

(c) TPR

Fig. 2. Averaged (over 10 simulations) nMSE (7), TPR (5),

and FPR (6) for CD-SLR1, CD-SLR0 and RPCP where the

tuning parameters are selected based on the best nMSE
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Fig. 3. Box plots showing the rank selection for CD-SLR0,

CD-SLR1 and RPCP where the tuning parameters are selected

based on the best nMSE.

Fig. 5 shows the boxplot for the rank selection using the

EBIC method. EBIC selects the true rank for the CD-SLR0

for all values of the noise variance, the EBIC method slightly

underestimates the rank for the CD-SLR1 method. The EBIC

method clearly fails at selecting the rank for RPCP.

4. CONCLUSIONS

In this paper we have developed a new algorithm using the l0
penalty for the SLR problem. The algorithm uses a cyclic de-

scent method for estimation and the extended BIC for the tun-
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Fig. 4. Averaged (over 10 simulations) nMSE (7), TPR (5),

and FPR (6) for CD-SLR1, CD-SLR0 and RPCP where the

tuning parameters are selected based on the best EBIC.
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Fig. 5. Box plots showing the rank selection for CD-SLR0,

CD-SLR1 and RPCP where the tuning parameters are selected

based on the best EBIC.

ing parameter selection of the sparsity parameter and the rank.

In simulations the performance of the new method was evalu-

ated under various settings and shown to outperform both the

RPCP method and a CD-SLR1 method.
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