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ABSTRACT

In this paper, we propose a new modeling technique of signals hav-

ing time-varying spectral patterns for supervised source separation.

Typical examples of such signals are instrumental sounds having

several segments such as “attack” and “sustain”. In the proposed

technique, a given signal is modeled as a linear combination of mul-

tiple bases which are obtained by using reduced-rank representation

of the given signal, where the number of bases is determined auto-

matically. The proposed technique is used to generate the basis ma-

trix in the context of supervised source separation, which improves

conventional source separation methods.

Index Terms— low-rank approximation, nonnegative matrix fac-

torization, automatic transcription

1. INTRODUCTION

Source separation is a technique to extract the underlying source sig-

nals from a given linear mixture. It is ubiquitous in several appli-

cations including array processing, medical image processing, au-

dio signal processing, and so on. A well-known strategy to realize

source separation is nonnegative matrix factorization (NMF) [1], [2].

The NMF aims to decompose a given data matrix (generated from

the linear mixture) into the product of two nonnegative factor matri-

ces1 to determine source signals. In practice, since the basis matrix

can be constructed by prior information, e.g., instrumental sounds,

supervised NMF (SNMF) has been also applied to source separation

[3]–[7]. That is, from the data matrix and the basis matrix, the SNMF

attempts to estimate the activation matrix. In addition, numerical re-

sults in [5] suggest that the SNMF achieves superior performances

to the NMF if the basis matrix is constructed suitably, which implies

that design of the basis matrix is significant in the SNMF.

In fact, such an issue has been studied, e.g., in the context of

sound source separation of polyphonic music [5]–[9]. A common

technique to design the basis matrix is realized by extracting a single

representative vector from the monophonic magnitude-spectrogram

of each instrumental sound, which is embodied essentially by finding

the best rank-one approximation of the given spectrogram [5]. Re-

cently, [7]–[9] adopt multiple representative vectors for dealing with

time-varying spectral patterns of monophonic spectrogram, due to

instrumental sounds of having multiple segments such as “attack”

and “sustain” (see Fig. 1), which naturally leads to the selection

problem of the number of representative vectors for each instrumen-

tal sound.

In this paper, we tackle the selection problem by introducing

a novel design of the basis matrix with use of reduced-rank rep-

resentation of the monophonic spectrogram matrix. Our idea is to

This work was supported by JSPS Grants-in-Aid (26730128).
1We refer to the two matrices as basis matrix and activation matrix.

(a) (b) (c)

Fig. 1. (a) Time-varying spectral patterns in the constant-Q transform
(CQT) data of piano A2. The horizontal axis represents time; (b) Rep-
resentative vectors learned by the proposed method; (c) The standard
basis vector (rank-one approximation).

reformulate capturing time-varying spectral patterns of the spectro-

gram matrix into the problem to find a low-rank approximation of

the spectrogram matrix (i.e., finding a small number of vectors that

is sufficient to accurately describe all the column vectors of the spec-

trogram matrix). Then, the representative vectors can be obtained

from column vectors of the low-rank approximation with discarding

negative components.

In addition, after giving examples of iterative algorithms for the

SNMF, we apply the proposed basis matrix to automatic transcrip-

tion of polyphonic music based on the SNMF. A numerical exam-

ple demonstrates that the proposed technique selects an appropriate

number of representative vectors and achieves superior estimation

performance to conventional design of the basis matrix, especially

in the “attack” segment of each instrumental sound.

2. PRELIMINARIES

Let R and R+ be the sets of all real numbers and non-negative real

numbers, respectively.

Non-negative matrix factorization (NMF) is a problem to de-

compose a given matrix X ∈ R
M×D
+ into a basis matrix B ∈

R
M×K
+ and an activation matrix W ∈ R

K×D
+ such that

X = BW +N , (1)

where N ∈ R
M×D is a noise matrix. It is usually assumed that

K < M . As an application of the NMF, Smaragdis and Brown

have proposed automatic transcription with the NMF [1]. In their

setting, X is a magnitude-spectrogram matrix of a given time signal

x(t) (t = 0, 1, . . . , Nx):

X :=




|X(0, 0)| |X(0, 1)| · · · |X(0, D − 1)|

|X(1, 0)| |X(1, 1)| · · · |X(1, D − 1)|

...
...

...
...

|X(M − 1, 0)| |X(M − 1, 1)| · · · |X(M − 1, D − 1)|



,

where X(f, n) is the time-frequency domain representation of x(t)
such as the short time Fourier transform (STFT) and constant-Q

3307978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



transform (CQT)2 . Each column vector of the basis matrix B rep-

resents an instrumental sound, and the activation matrix W contains

temporal information on notes. These two matrices are utilized to

transcribe polyphonic music sound.

Recently, supervised NMF (SNMF) has been proposed in con-

sideration that the basis matrix can be learned a priori [3]–[7]. Since

the SNMF assumes that the basis matrix B in (1) is known, the

SNMF is an estimation problem of the activation matrix W from

the given matrix X and B. In applications of the SNMF to auto-

matic transcription, each vector3 of the basis matrix is learned from

a monophonic magnitude-spectrogram matrix.4 Typically, the basis

vector is learned by solving a rank-one approximation problem [5]:

minimize
bmono∈RM

+
,wmono∈R

D1
+

‖Xmono − b
mono(wmono)⊤‖F , (2)

where Xmono ∈ R
M×D1

+ is a monophonic magnitude-spectrogram,

and b
mono is the basis vector. However, the basis vector selected by

(2) is not enough to approximate the instrumental sound if Xmono

has time-varying spectral pattern, or the rank of Xmono is large.

3. PROPOSED SCHEME

We propose a scheme to generate the basis matrix to describe time-

varying spectral patterns efficiently and in detail. In our scheme,

each monophonic magnitude-spectrogram matrix is separately uti-

lized to generate basis vectors, so that we focus on the process in-

volving a single monophonic magnitude-spectrogram matrix. Un-

like the standard generation process, we utilize multiple basis vec-

tors to describe the monophonic magnitude-spectrogram matrix. To

achieve our goal, we extend the typical basis learning problem in (2)

to a reduced-rank approximation problem. More precisely, we at-

tempt to find a basis matrix having minimum number r∗∗ of column

vectors over all candidate basis matrices B̃mono ∈ R
M×r
+ of enough

approximation precision, i.e., Υ(B̃mono) ≤ ǫ with a predefined pre-

cision parameter ǫ > 0, where5

Υ(B̃mono) := min
W̃mono∈R

r×D1
+

‖Xmono − B̃
mono

W̃
mono‖F . (3)

Considering that (3) is difficult to solve due to nonnegativity

constraints, we propose a strategy to generate an approximate so-

lution. The following observation leads to a guideline to generate an

approximate solution: the rank-r approximation of Xmono via the

singular value decomposition (SVD) tends to have only few nega-

tive components. Hence, by ignoring the nonnegativity constraints

in (3), we generate the approximate solution through three steps: (i)

we determine the number of column vectors, say r∗, via the SVD of

X
mono (see Remark 1); (ii) we form a set of vectors of which the

span is identical to the column space of the rank-r∗ approximation

of Xmono as candidate basis vectors (see a thumb rule in Remark 2);

(iii) we discard negative components of the candidate basis vectors.

Finally, we collect all the generated basis vectors, for given

monophonic spectrogram matrices, into the basis matrix, i.e., B =
[B(1), . . . ,B(I)], where I is the number of instrumental sounds, and

B
(i) ∈ R

M×ni consists of basis vectors of ith instrumental sound

(ni corresponds to r∗ for ith instrumental sound).

2The CQT has a log-frequency resolution, while the STFT does linear-
frequency, which facilitates exploiting “constant pattern” structures of har-
monic frequency components independent of their fundamental frequency.

3We call each column vector of the basis matrix as basis vector.
4Practically, a monophonic music signal is available (MIDI or [10]).

5The Frobenius norm is defined by ‖X‖F :=
√

∑M
i=1

∑N
j=1 x

2
i,j ,

where xi,j is the (i, j)-th entry of X ∈ R
M×N .

Algorithm 1 selection of {b̃ℓ1 , b̃ℓ2 , . . . , b̃ℓr∗ }

input : the principal left singular vector u1,
the set Xmono

r∗ := {(Xmono
r∗ ):,1, . . . , (X

mono
r∗ ):,D1

}
of column vectors of Xmono

r∗ .

b̃ℓ1 ← u1

for i = 2 to r∗ do
b̃ℓi ← arg min

x∈Xmono
r∗

|π
2
− θ(PBi

(x),x)|

where Bi = span{b̃ℓ1 , . . . , b̃ℓi−1
}

end for

output : {b̃ℓ1 , b̃ℓ2 , . . . , b̃ℓr∗}

Remark 1: (Detailed description of the first step) In the first

step, we determine r∗ with the SVD of Xmono, say UΣV
⊤. For

our observation, a lower bound of the minimum of the criterion Υ,

min
B̃mono

r ∈R
M×r
+

Υ(B̃mono
r )≥ min

B̃mono∈R
M×r,

W̃mono∈R
r×D1

‖Xmono−B̃mono
W̃

mono‖F

= ‖Xmono −X
mono
r ‖F

= ‖Σ −Σr‖F ,

is expected to be tight, where the first equation holds provided by

[11], and X
mono
r is the best rank-r approximation of X

mono ob-

tained by discarding all singular values except first r values (i.e.,

X
mono
r = UΣrV

⊤, where Σr is a truncation of Σ). Hence,

r∗ = min{r ∈ {1, 2, . . . ,M} | ‖Σ−Σr‖F ≤ ǫ}

is adopted as the number of column vectors.

Remark 2: (An angle-based greedy selection rule of col-

umn vectors) As an implementation of the second step, we form

{b̃ℓ1 , . . . , b̃ℓr∗ } by gathering the principal left singular vector u1

and (r∗ − 1) column vectors of the rank-r∗ approximation X
mono
r∗

in a way to greedily minimize their correlation in the sense of angles6

(i.e., orthogonal is desired). First, we set7
b̃ℓ1 = u1 ∈ R

M
+ . Then

for any i = 2, 3, . . . , r∗, we select ℓi s.t. bℓi minimizes the corre-

lation with Bi := span{b̃ℓ1 , b̃ℓ2 , · · · , b̃ℓi−1
} (see Algorithm 1).8

Finally, we normalize b̃ℓ1 , · · · , b̃ℓr∗ . Note that, thanks to our obser-

vation, the selected column vectors tend to have few negative com-

ponents.

4. APPLICATION TO SNMF

We apply the proposed scheme to generate the basis matrix in the

SNMF problem. Although most iterative algorithms for the SNMF

problem are applicable directly with our design of the basis matrix,

some of their ideas should be carefully extended. Here we exem-

plify it in the case of sound volume smoothness, considering that

sound volume usually changes smoothly: inspired by [6], we intro-

duce iterative algorithms for the SNMF problem, which can exploit

the sparseness of the activation matrix and smoothness of the sound

volume for improving performance. Note that we follow the idea

6Define inner product and induced norm as 〈x,y〉 := x⊤y and ‖x‖ :=
√

〈x,x〉 (x,y ∈ R
n) respectively. We define an angle θ(xj ,xk) between

xj and xk as θ(xj ,xk) := arccos
(

〈xj ,xk〉

‖xj‖‖xk‖

)

.

7The nonnegativity of u1 is guaranteed by [12, Theorem 8.3.1].
8The metric projection PBi

(x) of R
M onto Bi is defined by

PBi
(x) := argminy∈Bi

‖y − x‖.
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Fig. 2. Partition of W with respect to instrumental sounds. In our set-
ting, multiple basis vectors for each instrumental sound can be arranged
to adjoin each other, so that their corresponding activation coefficients
are in consecutive rows.

of derivation of iterative algorithms in [6]:9 we design convex opti-

mization criteria and then, applying a suitable convex optimization

technique (in this paper, the alternating direction method of multi-

pliers (ADMM) [15] is adopted), derive iterative algorithms for the

SNMF problem.

The convex optimization problem of our interest is as follows:

minimize
W∈R

K×D
+

‖X −BW ‖2F + λ1‖W ‖ℓ1 + λ2ψ(W ), (4)

where λ1, λ2 ∈ R+ are regularization parameters. The first term

maintains data fidelity, and the second term promotes the sparsity

with the ℓ1 norm defined by

‖W ‖ℓ1 :=

K∑

k=1

D∑

d=1

|wk,d|,

which is a translation of the fact that few instrumental sounds occur

simultaneously (see the use of this prior information in [13], [17]).

The third term encourages the smoothness of the volume of each

instrument sound. In our setting, since multiple basis vectors are uti-

lized for monophonic spectrogram, sound volume should be related

to multiple entries of the activation matrix to determine the volume

of each instrumental sound.10 Here we adopt a simple definition of

a sound volume v
(i)
d of the ith instrumental sound at time d: define

v
(i)
d := 〈w

(i)
d ,1ni

〉, (5)

as the sum of all the activation coefficients corresponding the ith
instrumental sound, say w

(i)
d ∈ R

ni
+ , where ni is the number of

entries which correspond to the ith instrumental sound at time d,

and 1ni
∈ R

ni is a vector whose all entries are 1 (see Fig. 2 for a

partition of w
(i)
d ).11 By using this definition of the sound volume,

9We adopt the idea to exploit prior information in a way similar in con-
ventional algorithms: Many algorithms utilize prior information by care-
fully designing their implicit/explicit optimization criterion. For exam-
ple, the activation smoothness is encouraged with the Total Variation (TV)
∑K

k=1

∑D−1
d=1 |wk,d+1 −wk,d| in [13] and with the so-called Tikhonov-

type regularization
∑K

k=1

∑D−1
d=1 (wk,d+1 −wk,d)

2 in [6], [14].
10In a typical situation (where a single basis vector is utilized for mono-

phonic spectrogram), sound volume smoothness is translated as the acti-
vation smoothness because sound volume relates to activation coefficients
directly.

11We can also consider the sum of magnitude-spectrogram as the volume

of ith instrumental sound at time d, i.e., v
(i)
d

:= 〈B(i)w
(i)
d
, 1M 〉.

Fig. 3. Score excerpted from [18]: For simplicity, two instruments are
utilized in our experiment while four instruments are utilized in [18].

we introduce two variations of the volume-smoothness terms as the

sum of time change of volume v
(i)
d

ψ1(W ) :=
I∑

i=1

αi

D−1∑

d=1

|v
(i)
d+1 − v

(i)
d |, (6)

ψ2(W ) :=
I∑

i=1

αi

D−1∑

d=1

(v
(i)
d+1 − v

(i)
d )2, (7)

where αi > 0 is a weight for the ith instrumental sound. Finally, we

apply the ADMM to solve (4) (see Appendix for detail).

5. NUMERICAL EXPERIMENTS

We show the efficacy of the proposed design of the basis matrix

for the SNMF problem in the context of the automatic transcription

of polyphonic music by comparing the proposed basis matrix with

the standard one.12 First, we generate the magnitude-spectrograms

of the monophonic signals Xmono and the mixture signal X using

MIDI. Monophonic signals of two instruments (Clarinet and Piano)

are generated from MIDI signals, where 25 tones per instrument are

utilized. The mixture signal is a MIDI signal according to the score

in Fig. 3 with additive Gaussian noise of 5dB. All the audio sig-

nals are sampled at 44.1k Hz, and their spectrograms are calculated

through STFT/CQT13. Second, we generate the basis matrix from

monophonic magnitude-spectrogram matrices by using one of the

two learning techniques, i.e., Algorithm 1 (ǫ = ‖Xmono‖F /10) and

the standard rank-one approximation in (2). Third, for solving the

SNMF problem with the given spectrogram X and the basis matrix

B, we apply the ADMM to (4) with the volume smoothness term

(6) or (7).14 In (6) and (7), the uniform weights, αi = 1 for all

i, are employed, and the parameters of all the iterative algorithms

are chosen in such the way that the performance is the best in our

experiments. Finally, using the resulting activation matrix Ŵ , we

generate an estimated score T (AŴ ) by thresholding the volume of

Ŵ , where T represents the component-wise thresholding operation

with the level τ = max(X)/5, max(X) is the largest entry in X ,

and A ∈ R
I×K represents the mapping from an activation matrix

W to a matrix consisting of their sound volumes, i.e., the (i, d)-th

component of AW is (AW )i,d = v
(i)
d .

For performance comparison of basis matrix generation in the

second step, we evaluate resulting transcription performances in

two criteria, ‖T (AŴ ) − T (AW
∗)‖2F and MIREX [16], where

T (AW
∗) is the ground-truth of the score. We also compute them

12We already confirm advancement of the proposed scheme compared
with [9]. The results and further comparisons will be discussed elsewhere.

13The STFT is computed using a Hamming window that is 46.4 ms long
with a 23.2 ms overlap. The CQT is performed by CQT toolbox [19] with
24 bins/octave.

14Note that the ADMM to (4) with (6) or (7) are supervised versions of
[13] and [14] when the basis matrix is learned by the standard way (2).
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Table 1. Performance comparisons averaged over 5 trials: the smaller ‖T (AŴ ) − T (AW ∗)‖2
F

and the larger F-measure are preferred. For
Standard (2), the ADMM with (6) and (7) are supervised versions of [13] and [14], respectively.

‖T (AŴ )− T (AW ∗)‖2F F-measure of MIREX [16]
Domain Basis matrix Iterative solver for (4) overall attack overall attack

STFT

Algorithm 1 ADMM with (6) 101.0 42.2 0.8428 0.5589
Standard (2) ADMM with (6) 102.4 46.6 0.8425 0.5422
Algorithm 1 ADMM with (7) 108.2 45.2 0.8305 0.5169
Standard (2) ADMM with (7) 110.6 51.0 0.8293 0.4871

CQT

Algorithm 1 ADMM with (6) 241.4 69.0 0.9182 0.8269
Standard (2) ADMM with (6) 268.8 87.6 0.9080 0.7689
Algorithm 1 ADMM with (7) 241.4 68.4 0.9185 0.8285
Standard (2) ADMM with (7) 285.4 98.6 0.9026 0.7373

(a) Ground-truth.

(b) Proposed: Algorithm 1.

(c) Conventional: Standard (2).

Fig. 4. Estimated score around the last two notes of the first measure
(i.e., the 1st E3 and its next note of clarinet as well as the 2nd D3 and
its next of piano). The results are shown in the case of the ADMM
with (6) in the CQT domain. The horizontal axis is time. Upper and
lower notes in each activation are clarinet and piano, respectively.

over “attack” columns15 to evaluate the performance in “attack” seg-

ments.

The proposed technique achieves the best performance in all the

simulation scenarios as shown in Table 1. Especially, we observe

significant performance advancement in “attack” segments. For ex-

ample, as shown in Fig. 4, the proposed basis matrix realizes an

accurate estimation of the “attack” segment of the piano.

6. CONCLUDING REMARKS

This paper has proposed a novel scheme to construct the basis matrix

for describing time-varying spectral-patterns. We have designed the

basis matrix using a reduced-rank approximation under the nonneg-

ativity constraints. Exploiting knowledge on the reduced-rank repre-

sentation, our scheme can determine the number of the basis vectors

automatically. In addition, as an application of the proposed scheme

to automatic transcription, we have discussed the design of iterative

algorithms for estimating the activation matrix by exemplifying a

mathematical translation of sound volume smoothness. The numer-

ical examples have shown the superior performance of the proposed

design of the basis matrix to the standard basis matrix based on the

rank-one approximation problem.

15As “attack” columns, we extract columns including the start of sound
and their three subsequent columns, where the start of sound is known from
the ground-truth.

APPENDIX: Iterative solvers for (4)

We adopt the ADMM [15] for solving the problem (4). Let X1 and X2

be Euclidean spaces equipped with the standard inner product 〈·, ·〉 and
its induced norm ‖ · ‖. In general, the ADMM can solve the following
convex optimization problem:

minimize
x∈X1

f(x) + g(L(x)) (8)

where f : X1 → R ∪ {∞} and g : X2 → R ∪ {∞} are proper lower

semicontinuous convex functions16 and L : X1 → X2 is a bounded
linear operator. The ADMM iteratively computes





xk+1 = arg min
x∈X1

f(x) +
1

2γ
‖L(x) − ηk + ξk‖

2

ηk+1 = proxγg(L(xk+1) + ξk)

ξk+1 = ξk + L(xk+1)− ηk+1,

where proxγg : X2 → X2 is the proximity operator17 of γg with γ > 0
(see e.g. [20], [21] for convergence analysis of the ADMM). That is, we
can solve (4) by applying the ADMM to the following reformulation
of (4) into (8): Let

f(W ) := ‖X −BW ‖2F
g(Z) := λ1‖Z1‖ℓ1 + λ2ν(Z2) + ι

R
K×D
+

(Z3)

L(W ) := (W ,Φ(W ),W ) ,

where Z = (Z1,Z2,Z3) ∈ RK×D ×RI×(D−1) ×RK×D , ι
R
K×D
+

is

the indicator function18 of RK×D
+ , ν : RI×(D−1) → R is ν(·) = ‖·‖ℓ1

if ψ = ψ1; ν(·) = ‖ · ‖2F if ψ = ψ2, and we utilize the fact that the
third terms in (4) are the composition

ψ1(W ) = ‖Φ(W )‖ℓ1 , ψ2(W ) = ‖Φ(W )‖2F ,

of a function involving a suitable norm and a bounded linear operator
Φ: RK×D → RI×(D−1) defined by

Φ(W ) := AWH,

where H = (hi,j) ∈ RD×(D−1) computes volume differences, i.e.,

hi,j =





−αi (i = j)

αi (i− 1 = j)

0 otherwise.

16A function f : X → R ∪ {∞} is called proper lower semicontinuous
convex if dom(f) := {x ∈ X|f(x) < ∞} 6= ∅, lev≤α(f) := {x ∈
X|f(x) ≤ α} is closed for all α ∈ R, and f(λx+(1−λ)y) ≤ λf(x)+
(1− λ)f(y) for all x,y ∈ X and λ ∈ (0, 1), respectively.

17The proximity operator of a proper lower semicontinuous convex func-
tion f : X → R ∪ {∞} is given by proxf (x) := argminy∈X f(y) +
1
2
‖y − x‖2.
18For a given nonempty closed convex set C, the indicator function ιC

is defined by ιC(x) := 0 if x ∈ C; ∞ otherwise.
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