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ABSTRACT
This paper examines the problem of locating outlier columns in a
large, otherwise low-rank, matrix. We propose a simple two-step
adaptive sensing and inference approach and establish theoretical
guarantees for its performance. Our results show that accurate out-
lier identification is achievable using very few linear summaries of
the original data matrix – as few as the squared rank of the low-rank
component plus the number of outliers, times constant and logarith-
mic factors. We demonstrate the performance of our approach ex-
perimentally in two stylized applications, one motivated by robust
collaborative filtering tasks, and the other by saliency map estima-
tion tasks arising in computer vision and automated surveillance.

Index Terms— Adaptive and compressive sensing, robust PCA

1. INTRODUCTION

In this paper we address a matrix outlier identification problem. Sup-
pose M ∈ Rn1×n2 is a data matrix that may be expressed as

M = L + C, (1)

where L is a low-rank matrix, and C is a matrix of outliers that is
nonzero in only a fraction of its columns. We are ultimately inter-
ested in identifying the locations of the nonzero columns of C from
a small number of linear measurements of M, with a particular focus
on settings where M may be very large.

Our investigation is motivated in part by robust collaborative fil-
tering applications, in which the goal may be to identify the locations
(or even quantify the number) of corrupted data points or outliers in
a large data array. Such tasks may arise in a number of contempo-
rary applications, for example, when identifying malicious responses
in survey data or anomalous patterns in network traffic, to name a
few. Depending on the nature of the outliers, conventional low-rank
approximation approaches based on principal component analysis
(PCA) [1] may be viable options for these tasks, but they become
increasingly computationally demanding as the data become very
high-dimensional. Here, our aim is to leverage dimensionality re-
duction ideas along the lines of those used in randomized numerical
linear algebra, (e.g., [2, 3]) and compressed sensing (e.g., [4, 5]), in
order to reduce the size of the data on which our approach operates.

We are also motivated by an image processing task that arises
in computer vision and surveillance applications – that of identi-
fying the “saliency map” of a given image [6–9]. In contrast to
existing methods designed to identify saliency map as a “post pro-
cessing” step, our aim here is to estimate the saliency map directly
from compressive samples. We address this problem using a lin-
ear subspace-based saliency model, where images are represented as
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matrices whose columns are vectorized versions of image patches
(see, e.g., [10]). The efficacy of modeling salient regions as outliers
from a single common low-dimensional subspace has been estab-
lished recently in [11]. Our approach may find utility in rapid threat
detection in surveillance applications where the goal is to identify
regions of anomalous behavior rather to image the entire scene.

1.1. Innovations and Our Approach

We propose an approach that employs dimensionality reduction
techniques within the context of a two-step adaptive sampling and
inference procedure, and our method is based on a few key insights.
First, we exploit the fact that the enabling geometry of our prob-
lem (to be defined) is approximately preserved if we operate on a
“compressed” version ΦM of M that has potentially many fewer
rows. Next, we use the fact that we can learn the linear subspace
spanned by the columns of the low rank component of ΦM using a
small subset of the columns of ΦM. Our algorithmic approach for
this step utilizes a recently proposed method called Outlier Pursuit
(OP) [12] that aims to separate a given matrix, say Y, into its low-
rank and column-sparse components using the convex optimization

argmin
L,C

‖L‖∗ + λ‖C‖1,2 s.t. Y = L+C (2)

where ‖L‖∗ denotes the nuclear norm ofL, ‖C‖1,2 is the sum of the
`2 norms of the columns ofC, and λ > 0 is a regularization param-
eter. Finally, we leverage the fact that we may effectively transform
– via linear observations – the overall outlier identification problem
into a compressed sensing problem, and employ existing theoretical
results (e.g., [13]) to establish the overall success of our approach.

In more detail, our procedure is initialized by selecting (ulti-
mately, random) matrices Φ ∈ Rm×n1 with m < n1, A ∈ Rp×n2

with p < n2 and vector φ ∈ R1×m, and by generating a column
subsampling matrix S comprised of a (random) subset of columns of
the n2×n2 identity matrix. In a first step, we observe ΦMS and ap-
ply the Outlier Pursuit procedure to this observed data in an attempt
to recover the linear subspace spanned by columns of ΦL (denoted
here by L̂(1)). Then, in a second step, we use a linear measurement
operator whose net effect is to (i) reduce the overall n1 × n2 matrix
M to a 1 × n2 vector φ PL̂⊥

(1)
ΦM where PL̂⊥

(1)
denotes projec-

tion onto the orthogonal complement of L̂(1), and (ii) compressively
sample the resulting (row) vector (post-multiplying with AT ). We
then apply sparse inference methods to recover the locations of the
nonzeros of φ PL̂⊥

(1)
ΦM, which nominally correspond to locations

of the outlier columns of M. We call our approach Adaptive Com-
pressive Outlier Sensing (ACOS), and provide a detailed description
as Algorithm 1. Our main contributions are a theoretical analysis of
ACOS and experimental evaluation of its performance.

3302978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



Algorithm 1 Adaptive Compressive Outlier Sensing (ACOS)

Input: M ∈ Rn1×n2 , column sampling Bernoulli parameter γ ∈
[0, 1], regularization parameter λ > 0, measurement matrices
Φ ∈ Rm×n1 , A ∈ Rp×n2 , measurement vector φ ∈ R1×m

Initalize: Column sampling matrix S = I:,S , where S = {i : Si =
1} with {Si}i∈[n2] i.i.d. Bernoulli(γ)

Step 1
Collect Measurements: Y(1) = ΦMS

Solve: {L̂(1), Ĉ(1)} = argminL,C ‖L‖∗ + λ‖C‖1,2
s.t. Y(1) = L+C

Let: L̂(1) be the linear subspace spanned by col’s of L̂(1)

Step 2
Compute: PL̂(1)

, the orthogonal projector onto L̂(1)

Set: PL̂⊥
(1)

, I−PL̂(1)

Collect Measurements: y(2) = φ PL̂⊥
(1)

ΦMAT

Solve: ĉ = argminc ‖c‖1 s.t. y(2) = cAT

Output: ÎC = {i : ĉi 6= 0}

1.2. Relation to Prior Work

Our effort here leverages results from Compressive Sensing (CS),
where the sparsity in the signal being acquired is exploited to de-
vise efficient procedures for reconstructing high-dimensional objects
[4, 5, 13]. The adaptive nature of our proposed approach is inspired
by numerous recent works in the burgeoning area of adaptive sensing
(see, for example, [14–23]). Our efforts here utilize a generalization
of the notion of sparsity, formalized in terms of a low-rank plus out-
lier matrix model. In this sense, our efforts here are related to earlier
work in Robust PCA [24, 25] that seek to identify low-rank matri-
ces in the presence of sparse impulsive outliers, and their extensions
where the outliers present as entire columns of an otherwise low-
rank matrix [12, 26–28]. In fact, the computational approach and
theoretical analysis of the first step of our approach make direct uti-
lization of the results of [12].

1.3. Outline

The remainder of the paper is organized as follows. In Section 2
we formalize our problem and state our main theoretical result. Sec-
tion 3 contains an experimental evaluation of our approach on syn-
thetic data, as well as in a stylized image processing application of
saliency map estimation. In Section 4 we provide discussion of a
few potential future directions.

2. MAIN RESULTS

Our specific problem of interest here may be formalized as follows.
Suppose M ∈ Rn1×n2 admits a decomposition of the form M =
L + C. Here, L is a matrix having rank at most r, and nL ≤ n2

nonzero columns. C is a column-sparse matrix with k ≤ n2 nonzero
“outlier” columns that may occur only at the set of locations where
the corresponding column of L is zero. Clearly, nL ≤ n2 − k.
The notion that nonzero columns of C be “outliers” is codified as
follows. Let L denote the linear subspace of Rn1 spanned by the
columns of L, and L⊥ denote its orthogonal complement in Rn1 .
Let PL and PL⊥ be the orthogonal projection operators onto L and
L⊥, respectively. We assume that the nonzero columns of C occur
at the indices i ∈ IC , {i : ‖PL⊥C:,i‖2 > 0}, where C:,i denotes

the i-th column of C. With this setup, our problem of interest here
may be stated concisely – our aim is to identify the set IC.

2.1. Assumptions

It is well-known in the matrix completion and robust PCA literature
that separation of low-rank and sparse matrices from observations
of their sum may not be a well-posed task – for example, matri-
ces having only a single nonzero element are simultaneously low
rank and sparse. To overcome these identifiability issues, it is com-
mon to assume that the linear subspace spanned by the rows and/or
columns of the low-rank matrix be “incoherent” with the canonical
basis (see, e.g., [12, 24–26, 29], among others). Here, we adopt a
similar approach, and assume such a condition on the row space of
the low-rank component L via the following definition from [12].

Definition 2.1 (Column Incoherence Property). Let L ∈ Rn1×n2

be a rank r matrix with at most nL ≤ n2 nonzero columns, and
compact singular value decomposition (SVD) L = UΣV∗, where
U is n1 × r, Σ is r × r, and V is n2 × r. The matrix L is said to
satisfy the column incoherence property with parameter µL if

max
i
‖V∗ei‖22 ≤ µL

r

nL
, (3)

where {ei} are basis vectors of the canonical basis for Rn2 .

Note that µL ∈ [1, nL/r]; the lower limit is achieved when all
elements of V∗ have the same amplitude, and the upper limit when
any one element of V∗ is equal to 1 (i.e., when the row space of L
is aligned with the canonical basis).

With this, we may state our structural assumptions concisely,
as follows: we assume that the components L and C of the matrix
M = L + C satisfy the following structural conditions:

(c1) rank(L) = r,
(c2) L has nL nonzero columns,
(c3) L satisfies the column incoherence property with parameter

µL, and
(c4) |IC| = k.

2.2. Recovery Guarantees and Implications

Our main result identifies conditions under which the procedure out-
lined in Algorithm 1 succeeds. Our particular focus is on measure-
ment matrices satisfying the following property.

Definition 2.2 (Distributional Johnson-Lindenstrauss (JL) Property).
An m×n matrix Φ is said to satisfy the distributional JL property if
for any fixed v ∈ Rn and any ε ∈ (0, 1),

Pr
( ∣∣ ‖Φv‖22 − ‖v‖22

∣∣ ≥ ε‖v‖22 ) ≤ 2e−mf(ε), (4)

where f(ε) > 0 is a constant depending only on ε that is specific to
the distribution of Φ.

Certain random matrices are well-known to satisfy the distribu-
tional JL property and, as noted in [30], for many randomly con-
structed Φ, (e.g., such that entries of Φ are i.i.d. zero-mean sub-
Gaussian distribution), f(ε) is quadratic in ε as ε → 0. This gen-
eral framework also allows us to directly utilize other specially con-
structed fast or sparse JL transforms [31, 32].

With this, we are in position to formulate our main result. We
state the result here as a theorem; its proof appears in [33].
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Theorem 2.1. Suppose M = L + C, where L and C satisfy the
structural conditions (c1)-(c4) with k ≤ 1

40(1+121 rµL)
n2. For any

δ ∈ (0, 1), if the column subsampling parameter γ satisfies

γ ≥ max

{
1

20
,
200 log( 5

δ
)

nL
,
24 log( 10

δ
)

n2
,
10rµL log( 5r

δ
)

nL

}
,

(5)

the measurement matrices Φ and A are each drawn from any distri-
bution satisfying (4) with m and p satisfying

m ≥ 5(r + 1) + log(k) + log(2/δ)

f(1/2)
, (6)

p ≥ 11k + 2k log(n2/k) + log(2/δ)

f(1/4)
, (7)

the elements of φ are i.i.d. realizations of any continuous random
variable, and for any upper bound kub of k the regularization pa-
rameter is set to λ = 3

7
√
kub

, then the following hold simultaneously

with probability at least 1− 3δ:
• the ACOS procedure in Algorithm 1 correctly identifies the

salient columns ofC (i.e., ÎC = IC ), and
• the total number of measurements collected is no greater than(

3
2

)
γmn2 + p.

Our main result establishes that the ACOS approach succeeds
with high probability with an effective sampling rate of #obs

n1n2
=

O
(
max

{
(r+log k)(n2/nL)µLr log r

n1n2
, (r+log k)

n1

}
+ k log(n2/k)

n1n2

)
,

which may be small when r and k are each small relative to the
problem dimensions. Compared with related work [26], which
identifies both the column space and the set of outlier columns of a
matrix M = L + C from O

(
n2r

2µ2 log(n2)
)

samples of M, we
see that the sufficient conditions for the sample complexity of our
approach are smaller than that of [26] by a factor of at least 1/r,
and, our approach does not require the row incoherence assumption.
We provide some additional, experimental, comparisons between
our ACOS method and the RMC method in Section 3.

3. EXPERIMENTAL EVALUATION

In this section we provide an experimental evaluation of the per-
formance of our approaches for both synthetically generated and
real data. We compare our methods with the Outlier Pursuit (OP)
approach of [12] and the Robust Matrix Completion (RMC) ap-
proach of [26]. We implement the RMC method using an accelerated
approximate alternating direction method of multipliers (ADMM)
method inspired by [34] (as well as [12, 35]). We implement the OP
methods (and intermediate executions of the OP-like optimization in
Step 1 of our approach) using the procedure in [26]. We implement
the `1-regularized estimation in Step 2 of our procedure as a LASSO
problem solved using an accelerated proximal gradient method [35].

3.1. Synthetic Data

We experiment on synthetically generated n1 × n2 matrices M,
with n1 = 100 and n2 = 1000, formed as follows. For a speci-
fied rank r and number of outliers k, we let the number of nonzero
columns of L be nL = n2 − k, generate two random matrices
U ∈ Rn1×r and V ∈ RnL×r with i.i.d. N (0, 1) entries, and
we take L = [UVT 0n1×k]. We generate the outlier matrix C
as C = [0n1×nL W] where W ∈ Rn1×k has i.i.d. N (0, r) entries
(which are also independent of entries of U and V). Then, we set
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Fig. 1. Outlier recovery phase transitions plots for ACOS (white
regions correspond to successful recovery).
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Fig. 2. Outlier recovery phase transitions plots for RMC.

M = L + C. Notice that the outlier vector elements have been
scaled, so that all columns of M have the same squared `2 norm, in
expectation. In all experiments we generate φ, Φ, and A with i.i.d.
zero-mean Gaussian entries.

Our first experiment investigates the “phase transition” behav-
ior of our approach. The results in Figure 1 depict the outcome
of this experiment for the 9 different sampling regimes examined,
with experimental setting as follows. First, we fix the column
downsampling fraction γ = 0.2, and choose a row sampling pa-
rameter m ∈ {0.1n1, 0.2n1, 0.3n1} (from top to bottom) and
column sampling parameter p ∈ {0.1n2, 0.2n2, 0.3n2} (from left
to right). Then, for each (r, k) pair with r ∈ {1, 2, 3, . . . , 40} and
k ∈ {2, 4, 6, . . . , 100} we generate M as above, and for each of
3 different values of λ ∈ {0.3, 0.4, 0.5} we perform 100 trials of
Algorithm 1 recording in each whether the recovery approach suc-
ceeded1 in identifying the locations of the true outliers for that value
of λ. Then, at each (r, k) point examined we identify the point-wise
maximum of the average success rates for the 3 different values of λ
to assess the recovery achievability for some choice of regularization
parameters. For easy comparison, we provide the average sampling
rate as fraction of observations obtained (relative to the full matrix
dimension) in the caption of each subfigure.

1We solve the optimization associated with Step 2 as a LASSO problem,
with 10 different regularization parameters µ ∈ (0, 1). We deem any trial a
success if for at least one value of µ, there exists a threshold τ > 0 such that
mini∈IC |̂ci(µ)| > τ > maxj /∈IC |̂cj(µ)| for the estimate ĉ(µ) produced
in Step 2. An analogous threshold-based methodology was employed in [12].
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Method OP RMC RMC ACOS ACOS
Sampling 100% 20% 5% 4.5% 2.5%

Fig. 3. Detection results for the MSRA Salient Object Database.

We see that increasing the parameterm of the matrix Φ in Step 1
of our algorithm while keeping the other sampling parameters fixed
(i.e., moving from top to bottom in any one column) facilitates ac-
curate recovery for increasing ranks r of the matrix L. Similarly,
increasing the parameter p of the matrix A in Step 2 of our algo-
rithm while keeping the other sampling parameters fixed (i.e., mov-
ing from left to right in any one row) facilitates accurate recovery for
an increasing number k of outlier columns. Overall, our approach
can successfully recover the locations of the outliers for non-trivial
regimes of r and k using very few measurements.

We also compute phase transition curves for RMC using a simi-
lar methodology described above, with results provided in Figure 2.
We observethat the RMC approach is viable for identifying the out-
liers from subsampled data provided the sampling rate exceeds about
10%. The relative difference in performance is likely due in large
part to the difference in the observation models between the two ap-
proaches – the RMC approach is inherently operating in the presence
of “missing data” while our approach permits us to observe linear
combinations of any row or column of the entire matrix.

3.2. Real Data

We also evaluate the performance of our proposed method on real
data in the context of a stylized image processing task that arises
in many computer vision and automated surveillance applications –
identifying the “saliency map” of an image. For this, we use images
from the MSRA Salient Object Database [36].

Our approach here is based on representing each test image as
a collection of non-overlapping image patches. We transform each
(color) test image to gray scale, decompose it into non-overlapping
10 × 10-pixel patches, vectorize each patch into a 100 × 1 column
vector, and assemble the column vectors into a matrix. For example,
images of size 300 × 400 here yield matrices of size 100 × 1200.
Notice that we only used gray scale values of image as the input fea-
ture rather than any high-level images feature – this facilitates the
use of our approach, which is based on collecting linear measure-
ments of the data (e.g., using a spatial light modulator, or an archi-
tecture like the single pixel camera [37]). We implement our ACOS
method using two different sampling regimes, the first correspond-

Table 1. Timing analysis for experiments on MRSA Database.

Method OP RMC RMC ACOS ACOS
Sampling 100% 20% 5% 4.5% 2.5%

Step 1 2.9441 2.6324 2.7254 0.0533 0.0214
(0.3854) (0.3237) (0.3660) (0.0118) (0.0056)

Step 2 – – – 0.2010 0.2014
– – – (0.0674) (0.0692)

ing to γ = 0.2, m = 0.2n1, p = 0.5n2 (an average 4.5% sampling
rate) and the other with γ = 0.2, m = 0.1n1, p = 0.5n2 (an aver-
age 2.5% sampling rate), and again generate Φ, A, and φ to have iid
Gaussian entries. We compare our approach with the OP approach
(which uses the full data) and the RMC approach at sampling rates
of 20% and 5%. The results are provided in Figure 3.

We note first that the OP approach, performs fairly well at iden-
tifying the visually salient regions, providing evidence to validate
the use of the low-rank plus outlier model for visual saliency (see
also [11]). Next, comparing the results of the individual procedures,
we see that the OP approach appears to uniformly give the best de-
tection results, which is reasonable since it is using the full data as
input. The RMC approach performs well at the 20% sampling rate,
but its performance appears to degrade at the 5% sampling rate. The
ACOS approach, on the other hand, still produces reasonably accu-
rate results using as low as a 2.5% sampling rate.

We also compare implementation times of the algorithms on this
saliency map estimation task. Table 1 provides the average execu-
tion times (and standard deviations) for each approach, evaluated
over 1000 images in the MSRA database2. Here, we only execute
each procedure for one choice of regularization parameter. Overall,
we see ACOS may be more than 15× faster than the OP and RMC
methods. At the expense of increased sample complexity, one could
set A = I in Step 2 of the ACOS method and thus eliminate the need
to implement an iterative solver there. This could significantly speed
up the second step of our method, and could result overall in relative
speedups of up to 100×. Overall, our results suggest a significant
improvement via ACOS for both detection consistency and timing,
which may have a promising impact in salient signal detection tasks.

4. CONCLUSIONS

We proposed a novel two-step procedure to efficiently identify
outlier columns embedded in a low-rank matrix using as few as
O ((r + log k)(µLr log r) + k log(n2/k)) linear measurements,
and demonstrated its computational improvements over related ap-
proaches that operate on the “full data” directly. Further reductions
in the complexity of our approach may be achieved using fast JL
embeddings along the lines of [31, 32]. One interesting potential
extension of our work would be to leverage our dimensionality re-
duction insight (focused only on outlier detection, not full recovery)
within the context of the Compressive Principal Component Pursuit
(Compressive PCP) of [38] in order to yield a procedure with com-
parable performance as ours, but which acquires only non-adaptive
linear measurements of M. Finally, we mention that our full-length
version [33] of this work includes several extensions of the ideas
presented here, including analysis of a “simplified” version of ACOS
(where we choose A = I in Step 2, to simplify the final inference),
and evaluation of extensions to noisy and missing data settings.

2Timing comparisons were done with MATLAB R2013a on an iMac with
a 3.4 GHz Intel Core i7 processor, 32 GB memory, and running OS X 10.8.5.
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