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ABSTRACT

In this paper, we work on the problem of subspace estimation from
random downsamplings of its projection matrix. An optimization
problem on the Grassmann manifold is formulated for projection
matrix completion, and an iterative gradient descend line-search al-
gorithm on the Grassmann manifold (GGDLS) is proposed to solve
such optimization problem. The convergence of the proposed algo-
rithm has theoretical guarantee, and numerical experiments verify
that the required sampling number for successful recovery of a rank
s projection matrix in RN×N with probability 1 is 2s(N − s) in
the noiseless cases. Compared with some reference algorithms, in
the noiseless scenario, the proposed algorithm is very time efficient,
and the required sampling number is rather small for successful re-
covery. In the noisy scenario, the proposed GGDLS is remarkably
robust against the noise both under high measurement SNR and low
measurement SNR.

Index Terms— Matrix completion, Subspace projection matrix,
Subspace estimation, Optimization on Grassmann manifold

1. INTRODUCTION

For a linear subspace in an ambient Euclidean space, its projection
matrix is the matrix by which a vector in the ambient space has to
multiply when projected onto such subspace. Since subspace pro-
jection matrix has a one to one correspondence with subspace, given
that some entries of a projection matrix are randomly sampled, we
are able to estimate the subspace by the completion of its projec-
tion matrix. Subspace estimation has been a concerning problem
in signal processing and computer vision. In the problems of face
recognition [1], motion segmentation [2], and visual tracking [3], it
is found that the objects are in subspaces with much lower dimension
than the ambient space.

While there have existed many solving strategies for matrix
completion [4, 5], most of them are for general low rank matrices.
The number of random samples has to be larger than s(2N − s), in
which N × N is the size of the matrix and s is its rank. The sub-
space projection matrix has rather specific structure. It is not only
semi-definite, but also only has eigenvalues 1 and 0. Thus, if the
structure of the projection matrix is fully explored, its completion is
allowed to have less complexity.

Considering the fact that a subspace projection matrix is equiva-
lent to its corresponding subspace, one may find it natural to connect
subspace projection matrix to the Grassmann manifold Gr(RN , s)
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denoted as GrN,s, which is the set of all s-dimensional subspaces
in RN . In fact, there are methods solving matrix problems on an
abstract manifolds [6–9]. We will review some of them in section 4.

In this paper, we work in the circumstance in which only partial
entries of the projection matrix of a subspace X ∗ can be randomly
sampled. The aim is to reconstruct the projection matrix and to esti-
mate X ∗ accordingly. Since a subspace with fixed dimension is on a
Grassmann manifold, the reconstruction of the projection matrix is
indeed the problem of finding a point on the manifold GrN,s such
that the sampled entries are satisfied.

The main contribution of this work is that we propose a method
of projection matrix completion (GGDLS) based on the line-search
algorithm on a manifold, and achieve subspace estimation accord-
ingly. In the noiseless circumstance, the number of samples can be
reduced to around 2s(N−s) in the numerical experiments, while the
algorithm is still very efficient with low computational complexity.
When the measurement noise is considered, the proposed GGDL-
S is remarkably robust both under high measurement SNR and low
measurement SNR.

2. PRELIMINARY

Preceding the description of our proposed method of projection ma-
trix completion, we first have a brief review on the Grassmann mani-
fold and the line-search algorithm on a manifold. One may read [10]
for reference.

2.1. Grassmann Manifold

The Grassmann manifold GrN,s has a formal definition as a quotient
manifold

GrN,s :=
O(N)

O(s)×O(N − s) , (1)

whereO(N) it the N ×N orthogonal matrix group. It is a compact
differentiable manifold with dimension d = s(N − s). According
to the definition in (1), a point X ∈ GrN,s can be represented as
a matrix X such that the columns of X span the subspace X and
XTX = Is. In this paper, we refer to such X as its corresponding
subspace X ∈ GrN,s.

The tangent space of GrN,s at a point X is

TXGrN,s = {ξ ∈ RN×s : XTξ = 0}.

For any tangent vectors η, ξ ∈ TXGrN,s, the metric on GrN,s in-
duced by the Euclidean metric in RN is

〈η, ξ〉X := trace
(

(XTX)−1ηTξ
)
, (2)
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and the geodesic distance induced by such metric is

dg(X,Y ) :=

s∑
i=1

θ2
i ,

where θi are the principal angles. There are several other distances
on GrN,s, among which the projection distance is defined by the
projection matrix

dp(X,Y ) :=
1

2
‖XX ′ − Y Y ′‖2F =

s∑
i=1

sin2 θi.

From its definition, we know that the projection metric tends to be
less sensitive than the geodesic metric as θi becomes large, but ap-
proximates the geodesic metric well when all of the principal angles
are small. In this work, we use dp to evaluate the distance between
the target subspace and the estimated subspace.

2.2. General framework of Line-search Algorithm on Manifold

The line-search algorithm on Riemannian manifoldM is the gener-
alization of the iterative line-search method in an Euclidean space.
In the kth iteration, it consists of selecting a tangent vector ηk+1 to
M at Xk, which is the result of the previous iteration, and perform-
ing a search along a curve γ(t) inM such that γ′(0) = ηk+1.

In order to find the descend direction of f on the tangent space
at a point X , we need the notion of the gradient of f with respect to
M.

Definition 1. [10] Given a smooth scalar field f on a Riemanni-
an manifold M, the gradient of f at a point X ∈ M denoted as
gradf(X) is defined as the unique element of TXM such that

〈gradf(X), ξ〉X = ∇f(X)[ξ], ∀ξ ∈ TXM,

in which the linear mapping∇f(X) is the differential of f at X .

Any direction ξ ∈ TXM such that

〈ξ, gradf(X)〉X < 0

is a gradient related descend direction. Having obtained a descend
direction on the tangent space, we need to find the corresponding
curve on the manifold along which the solution is searched. Thus,
the retraction map is defined to retract the descend direction from the
tangent space back onto the manifold.

Definition 2. [10] A retraction on a manifoldM is a smooth map-
ping R from the tangent bundle TM onto M with the following
properties. Let RX denote the restriction of R to TXM.

1. RX(0) = X ,

2. ∇RX(0) = idTXM.

From the above definition, if a line-search algorithm on a com-
pact manifold satisfies several conditions on the choice of descent
direction and descent step size, the following theorem guarantees
that such algorithm is able to converge.

Theorem 1. [10] Let {Xk} be an infinite sequence of iterates gen-
erated by a line-search method on a compact Riemannian manifold.
If in each iteration, the descent direction ηk on the tangent space is
chosen as a gradient related direction, and the step size tk is chosen
according to the Armijo method such that

f(Xk)− f(Xk+1) ≥ c(f(Xk)− f(RXk (tkηk)), (3)

in which c ∈ (0, 1), then

lim
k→∞

‖gradf(Xk)‖2 = 0.

Provided that a well-defined retraction mapping and a sequence
of gradient related directions can be numerically computed, such
general line-search framework on compact non-linear manifold is
a efficient solver of minimization problem.

3. SUBSPACE PROJECTION MATRIX COMPLETION

3.1. Problem Formulation

Supposed that X ∗ is an s dimensional subspace in RN , and s� N .
x1, · · · ,xs are s points such that

X ∗ = span{x1, · · · ,xs},

and that X∗ = [x1, · · · ,xs] satisfies

(X∗)TX∗ = Is,

so the projection matrix of X ∗ is

PX∗ = X∗(X∗)T ∈ RN×N .

The measurement is Y = A(PX∗), in which

A : RN×N → RM

is a mapping defined as

A(PX )i = [PX ]Ωi , i = 1, 2, · · ·M,

where Ω ⊂ {1, 2, · · · , N}×{1, 2, · · · , N} is a subset of the matrix
indices which are uniformly randomly chosen, and |Ω| = M . Thus,
Y selects M entries of PX∗ at random with M � N2.

The aim is to reconstruct the projection matrix PX∗ from Y , so
it is a problem of projection matrix completion. Since a subspace has
a one to one correspondence with its projection matrix, the subspace
X ∗ is also estimated by the completion of its projection matrix PX∗ .

According to the fact that

PX = XXT, X ∈ GrN,s,

we propose the following optimization problem to achieve its com-
pletion

min
X∈GrN,s

f(X) =
1

2
‖A(XXT)− Y ‖2F . (4)

Note that f is a well-defined cost function on the Grassmann mani-
fold GrN,s, because

f(X) = f(XQ), ∀Q ∈ Rs×s QQT = Is,

which means that f is invariant with different choice of the orthonor-
mal basis of the subspace.
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Table 1. Algorithm 1: Grassmann Manifold Gradient Descent Line
Search Algorithm (GGDLS)

Require: Grassmann manifold GrN,s;
continuously differentiable cost function f ;
retraction R from TGrN,s to GrN,s;
scalars for the Armijo step size α > 0, β, σ ∈ (0, 1);
Input: Initial iterate X0 ∈ GrN,s;
Output: Sequence of iterates {Xk}.
For k = 0, 1, 2, · · · do:

1.Compute the Euclidean gradient∇fXk at Xk ;
2.Project∇fXk onto the tangent space TXkGrN,s

to obtain ηk;
3.Xk+1 = RXk (tkηk),

where tk is the Armijo step size;
Until: Stopping criterion satisfied;

3.2. The Proposed Solution

In order to complete a subspace projection matrix, we need to solve
an optimization problem on the Grassmann manifold GrN,s. As
shown in problem (4), the cost function is differentiable, so we pro-
pose an iterative line-search method on GrN,s called Grassmann
manifold gradient descent line-search algorithm (GGDLS).

The framework of our method is in Algorithm 1. In the first step,
the Euclidean gradient ∇fXk is an N × s matrix whose entries are
computed as

[∇fX ]p,q =
∑

j:(p,j)∈Ω

[XXT − Y ]p,jXj,q

+
∑

i:(i,p)∈Ω

[XXT − Y ]i,pXi,q.

In the second step, ηk is the projection of∇fXk onto the tangent
space of GrN,s at Xk

ηk = (IN −XkX
T
k )∇fXk .

Now we verify that ηk is the gradient of f on GrN,s as defined in
Definition 1. For any ξ ∈ TXkGrN,s,

〈ηk, ξ〉Xk = trace(∇fT
Xk

(IN −XkX
T
k )ξ)

= trace(∇fT
Xk
ξ)

= ∇fXk [ξ],

in which the second equation stands because XT
k ξ = 0 for all ξ ∈

TXkGrN,s.
In the third step of Algorithm 1, the retraction of tkηk at Xk

is the q factor of the QR decomposition of Xk − tkηk. The Armijo
step size is tk = αβm withm being the smallest nonnegative integer
such that

f(Xk)− f(RXk (βmαη)) ≥ −σ〈ηk, βmαηk〉Xk .

Algorithm 1 belongs to the general framework of line-search
method on manifold. The merit of such kind of methods is that it
avoids a cost function comparatively difficult to solve, such as a non-
convex cost function of the matrix, by moving these penalties from
the cost function to the constraint set. Therefore, the constraints are

handled in an effective and convenient way. Although the constrain-
t set is not convex anymore, it becomes a smooth manifold which
allows for optimization methods with easy computation and conver-
gence guarantee.

Since {ηk} is exactly a sequence of gradients of f with respect
to GrN,s, and Xk+1 satisfies (3), the convergence of Algorithm 1
is guaranteed by Theorem 1 so that the norm of the gradient with
respect to GrN,s is convergent to 0 given any initial value.

The advantage of our method is that we fully explore the struc-
ture of a subspace projection matrix so that the computational
complexity is fundamentally reduced. In fact, by the constraint on
GrN,s, we reduce the magnitude of the size of the problem from
N × N to N × s, and the computation in each iteration is easy to
implement numerically.

4. PREVIOUS WORKS

There have existed methods solving matrix optimization problems
on manifolds. We list a few of them in the following to see the wide
use of matrix manifolds as well as the connection between these
methods and the proposed method in this work.

In the work [11], a conjugate gradient descent method on Grass-
mann manifold is proposed for robust subspace estimation in con-
junction with the generalized projection based M-Estimator (gpbM).
Their problem is to estimate the projection matrix and the intercep-
t vector of an affine subspace from sample points contaminated by
noise. They have shown that by optimizing the parameter matrix on
the Grassmann manifold, the performance of the gpbM algorithm
improves significantly. Different from their view of denoising, the
proposed method allows the use of random downsampling so that
much fewer samples are needed.

The work [12] solves the problem of online identification and
tracking of subspaces from incomplete information by analyzing in-
cremental gradient descent on the Grassmann manifold. The number
of samples can be reduced to around 10s(N−s) in their simulations.
Their algorithm is scalable to very high-dimensional data, and is re-
markably computationally efficient. However, whether the algorithm
converges to the basin around the global minimum is very sensitive
to the choice of the step size and the starting point. As a contrast, our
method does not suffer from this problem. The numerical simulation
indicates that with a random starting point the proposed method is
able to converge to a successful recovery given enough samples.

The problem of low-rank matrix completion is also studied in
the work [13]. They formulate the problem as a minimization of a
differentiable cost function on the Riemannian manifold of matrices
with fixed rank. The experiments indicate that their approach scales
well for large-scale problem, and the number of samples can be re-
duced to around 4s(N−s). While their constraint is on the manifold
of fixed rank matrices, the proposed method is with constraint on the
Grassmann manifold so that it is more appropriate for the completion
of a projection matrix.

5. NUMERICAL EXPERIMENTS

In this section, we implement the proposed algorithm (GGDLS) for
subspace projection matrix completion. The proposed method is
compared with other methods on matrix completion. These refer-
ence methods are SRF [15], IALM [16] 1, LMaFit [17], and FP-
CA [18]. Note that all the parameters in these reference algorithms

1IALM is not compared in the third figure, in that its released code returns
NaN or Inf when the measurement SNR is 10dB.
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Fig. 1. Probability of successful recovery under various measure-
ment number M . N = 100, s = 10.
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Fig. 2. Time consumption for each algorithm in 10 trials. N = 100,
s = 10. The ratio of M

s(N−s)
is chosen as 3.5 so that all recorded

recoveries are successful.

are set as default, and the precondition that a projection matrix is
symmetric is utilized in all of them. The initial value X0 in the pro-
posed GGDLS algorithm is obtained by the QR decomposition of
the randomly sampled matrix A(X∗(X∗)T).

In each trial, we first generate a random matrix in RN×s whose
entries are independent identically distributed Gaussian random vari-
able, and then apply QR decomposition to obtain anN×smatrixX∗

with orthonormal columns. Such X∗ represents the target subspace
that is to be estimated. The measurement is obtained by randomly
choosing M entries from X∗(X∗)T. The error of the estimation
is computed as ‖X̂X̂T − X∗(X∗)T‖F , and a recovery is success-
ful if its error is less than 10−2 in the noiseless cases. When the
measurement noise is considered in the simulation, each sampling
is contaminated by additive Gaussian noise. In all of these trials,
N = 100 and s = 10.

The result of the probability of successful recovery under vari-
ous sampling number is demonstrated in Fig. 1. For each point, 100
times of trials are simulated. The time consumption of these algo-
rithms is shown in Fig. 2. 10 trials are recorded for each algorithm,
and the ratio of M

s(N−s)
is chosen as 3.5 so that all recorded recov-

eries are successful. The robustness of these algorithms is tested in
Fig. 3, in which the ratio of M

s(N−s)
is also chosen as 3.5. Under

each level of the measurement SNR (MSNR), 100 times of trials are
simulated for each algorithm, and the reconstructed SNR (RSNR) is
shown.
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Fig. 3. Reconstructed SNR under various measurement SNR. N =
100, s = 10. The ratio of M

s(N−s)
is chosen as 3.5.

From the simulation result, it is shown that in the noiseless cases,
for successful recovery with probability 1, the required number of
samples M for the proposed GGDLS is 2s(N − s). Given a fixed
recovery probability, the required M for GGDLS is more than that
of FPCA, but the time consumption of the proposed GGDLS is only
about 10 percent of that of FPCA. Although the time consumption
of LMaFit is less than the proposed GGDLS, the required M for
GGDLS is obviously less than that for LMaFit. In the noisy scenario,
the reconstruction SNR that the proposed GGDLS is able to achieve
is 7dB higher than the measurement SNR both under high MSNR
cases and low MSNR cases. Thus, its robustness is the best among
all the reference algorithms in this experiment.

It can be concluded that among the algorithms in our experiment,
in the noiseless cases, given random samples of a fixed number, the
proposed GGDLS is time efficient with rather high probability of
successful recovery. In the noisy cases, both when the MSNR is
high and low, the proposed GGDLS outperforms the other reference
algorithms.

6. CONCLUSION

In this work, we propose a method on projection matrix comple-
tion (GGDLS) based on the line-search algorithm on a manifold, and
achieve compressive subspace estimation accordingly. The number
of samples can be reduced to 2s(N − s) in the numerical experi-
ments. Compared with other reference algorithms on matrix comple-
tion, in the noiseless cases, given random samples of a fixed number,
when both the time consumption and the successful recovery prob-
ability are considered, the proposed algorithm exhibits advantage in
the completion of projection matrix. In the noisy cases, the proposed
GGDLS is remarkably robust against the noise both under high M-
SNR and low MSNR.

This work is not exhausted, and there are further works to do on
such problem. For instance, for our proposed method, the theoretical
lower bound on the number of random samplings is to be studied. It
should be between s(N − s) and 2s(N − s), in that the theoreti-
cal degrees of freedom is s(N − s), and our simulations show that
2s(N − s) is enough for recovery with probability 1. Also, when
the data is contaminated with noise, the robustness of the proposed
method is still to be theoretically analyzed.
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