
AN ONLINE ALGORITHM FOR DISTRIBUTED DICTIONARY LEARNING

Symeon Chouvardas1 Yannis Kopsinis2 Sergios Theodoridis2

1Mathematical and Algorithmic Sciences Lab,
Huawei France R&D,

Paris, France.
Email: symeon.chouvardas@huawei.com

2University of Athens,
Dept. of Informatics and Telecommunications,

Athens 15784, Greece.
Emails: kopsinis@ieee.org, stheodor@di.uoa.gr

ABSTRACT

This paper proposes a novel algorithm for online distributed
dictionary learning, where a set of nodes is requested to collec-
tively estimate a common dictionary via sequentially received data
vectors. At each time instance, in which a new datum becomes
available, the sparse representation of the data with respect to the
estimated dictionary is computed locally at each node by employing
a sparsity promoting algorithm. In the sequel, the nodes cooperate
in order to collaboratively update the dictionary via the distributed
Recursive Least Squares (RLS) algorithm. Numerical examples,
both with synthetic and real data, validate that the performance
of the proposed algorithm is comparable to that of centralized state
of the art algorithms.

Index Terms— Distributed Dictionary Learning, Online Learn-
ing, Sparse Representation, Distributed RLS.

I. INTRODUCTION

In recent years, there is an ever increasing interest in sparse sig-
nal representations [1], [2] as the means to deal with various signal
processing and machine learning tasks, such as data compression,
denoising, restoration, classification [3], [4], [1], [5], [6], etc. Key
ingredient in such techniques is to properly build a dictionary,
i.e., a set of elementary signals/vectors, called atoms, which is
representative for the data of interest. In particular, the objective is
the specific signals to be accurately expressed or modeled as a linear
combination of a small subset of the dictionary atoms. Although
fixed and predefined dictionaries, such as overcomplete wavelet or
Gabor dictionaries [7] have demonstrated notable performance in a
number of tasks, the most effective dictionaries are those “trained”
using a number of available signal exemplars, a practice referred
to as dictionary learning, [3], [4], [1], [5], [6].

The present work deals with the problem of online dictionary
learning in a distributed environment. The Big Data era, in which
we live in, has led to several novel challenges associated with the
large amount of data to be processed. For instance, data gathered
by social networks translate to millions of training signals. Thus, it
becomes clear that processing of such a large amount of data might
be proved to be infeasible due to lack of processing power and/or
of storage capabilities. These limitations can be overstepped if one
resorts to the online learning philosophy, e.g., [6]. According to this,
the data are processed sequentially, one per iteration step, until all
data have been considered or a certain convergence criterion has
been satisfied. Learning sparse representation and dictionaries in an
online fashion is of paramount importance when a large number of
high–dimensional observations vectors has to be processed.

Another approach to deal with large amounts of data is to split
the full problem into subtasks and feed a number of processing

Symeon Chouvardas was with the University of Athens at the time this research
was conducted. The project HANDiCAMS acknowledges the financial support of the
Future and Emerging Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission, under FET-Open grant number:
323944 by the FET HANDICAM FP7. This work is partly supported by Marie Curie
IEF, “SOL”, 302898.

units. In such a scenario, it is desirable to distribute the computa-
tions over the network instead of transmitting and processing all
the data in a fusion center (FC). Following this philosophy, we
propose a method for training the dictionary in a decentralized
way as follows: the network nodes/agents are assumed to form
an ad–hoc network and the dictionary is computed cooperatively;
that is, each node computes the dictionary using locally obtained
data as well as information, which is received by the nodes of
the neighborhood. Besides the computational and storage ease per
processing unit, which is attained by distributed processing, another
important advantage is that of privacy. In particular, due to the fact
that the processing of the data is performed locally and the nodes
exchange (intermediate) training results instead of raw data, the
need for sensitive information exchange is bypassed [8].

Related Works: Dictionary learning has been extensively stud-
ied over the past years, mainly in its batch form, e.g, [4], [9], [6].
In dictionary learning, it is required to compute, simultaneously,
a dictionary as well as a set of sparse vectors; the latter are used
to combine the columns of the dictionary in a way that sparsely
represents the available training data. The most common approach,
adopted in the majority of algorithms, is a two–step procedure,
known as the sparse coding step and the dictionary update step.
This procedure keeps one set of parameters fixed and minimizes
the cost function with respect to the other, e.g., [4], [10]. An
online dictionary learning algorithm has been proposed in the
seminal work of [10], where the dictionary is computed via the
block–coordinate descent method, whereas [11] employs the RLS
algorithm for the dictionary computation.

The distributed dictionary learning problem has been studied
in [12], [13], [14]. In particular, the work in [12] considers a
distributed scenario in which each node/agent is in charge of a
portion of the dictionary elements. This problem is effectively
solved by exploiting the form of the dual function and resorting
to the diffusion rationale. Moreover, in [14] the authors propose
a distributed K–SVD algorithm and employ the Alternating Direc-
tions Method of Multipliers (ADMM) to solve the problem. Finally,
an online distributed algorithm, considering a common dictionary,
has been studied in [13] and a diffusion–based gradient descent
algorithm is employed.

Contributions: In this paper, a novel algorithm for online
distributed dictionary learning, in the setup where the nodes seek
for a common dictionary, is presented. Compared to the effort
[13], which also studies the online distributed problem, for the first
time, here, we propose an RLS–based algorithm, for the dictionary
estimation, the performance of which is enhanced and it is almost
similar to that of centralized algorithms. For the sparse coding
step we employ the Least Angle Regression (LARS) algorithm
at each mode. Afterwards, a distributed RLS algorithm is used
so that the nodes compute, in a collaborative way, the dictionary.
Comparative experiments against other state of the art dictionary
learning algorithms verify that the algorithm demonstrates compet-
itive performance.

Notation: Lowercase (uppercase) boldfaced letters stand for
vectors (matrices). The set of real numbers is denoted by R.

3292978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

Moreover, ‖ · ‖, ‖ · ‖1 are the Euclidean and ℓ1 norm respectively.
Finally, |S| stands for the cardinality of the set S .

II. PROBLEM FORMULATION

We consider a network consisting of N nodes/agents. Each
node, k ∈ N := {1, 2, . . . , N}, has access to nk data vectors,

xk(n) ∈ R
M , n = 1, . . . , nk . Our goal is to compute an

overcomplete dictionary A ∈ R
M×K , K > M , which is common

to the nodes of the network, so that:

xk(n) = Abk(n) (1)

where bk(n) ∈ R
K is a sparse vector, i.e., it comprises a small

number of non–zero coefficients. The physical reasoning of the
model presented in (1) is that each observation vector is a linear
combination of few columns of the dictionary A.

Assuming that the observations are centrally available at a fusion
center for processing, the optimization problem can be written as:

min
A,Bk

∑

k∈N

‖Xk −ABk‖
2
F ,

s.t. ∀k, n ‖bk(n)‖0 ≤ T0,

where Xk = [xk(1), . . . ,xk(nk)] ∈ R
M×nk , Bk =

[bk(1), . . . , bk(nk)] ∈ R
K×nk , ‖ · ‖0 denotes the ℓ0 pseudo–norm

and T0 is a positive integer. This problem, which is NP–hard due to
the ℓ0 norm-based sparsity enforcing constraint, is usually relaxed
by substituting the ℓ0 norm constraint by an ℓ1–norm constraint,
e.g., [10]. Alternatively, greedy techniques are employed for the
estimation of the sparse coding vector, e.g., [4].

In the sequel, we will discuss how this problem can be tackled
in a distributed way. Moreover, the problem will be properly recast
so as to be solved in an online fashion.

III. STRATEGIES FOR ONLINE DICTIONARY
LEARNING

First of all, in order to help the reader grasp the basic concepts of
the online dictionary learning problem, let us describe the method-
ology of [10]. Since we deal here with a decentralized problem
the originally proposed cost function is properly reformulated; the
reasoning, however, remains the same. At iteration step n, in which
a new datum per node becomes available, estimates are produced
by minimizing the function

fn(A) =
1

n

∑

k∈N

n∑

i=1

l(xk(i),A), (2)

where

l(x,A) := min
b

1

2
‖x −Ab‖2 + λ‖b‖1, (3)

with λ being a regularization parameter. Furthermore, as it is
usually the case in most distributed learning problems, in order
to prevent the dictionary from taking arbitrarily large values, we
constraint the columns to have an ℓ2 norm less than or equal
to 1 or, equivalently, to belong to the following convex set:

C := {A ∈ R
M×K : ∀j = 1, . . . ,K, a(j)Ta(j) ≤ 1}, where

a(j) is the j–th column of A. It is worth pointing out that the
problem of minimizing (2) is not convex. However, it is convex in
each one of its arguments, A, b, while keeping the other one fixed.
A commonly adopted method, which will also be followed here, is
a two–step approach, which alternates between the two unknown
quantities, minimizing, at each step, one of them, while keeping
the other one fixed, e.g., [10], [15], [16].

III-A. Online Dictionary Update via RLS

To keep the discussion simple, let us consider for the time
being a centralized mode of operation. The subscripts denoting
the node index will be omitted; the decentralized problem will be
revisited short after. Recall the previous discussion around the two–
step approach. Let us consider the iteration step n, in which the

sparse vector, denoted by b̂k(n), has been estimated by minimizing

l(x(n), Â(n−1)), where Â(n−1) is the most recently computed
dictionary. Then, in the dictionary update step, an estimate of the
unknown dictionary can be computed by minimizing the following
cost function:

f̂n(A) =
1

n

n∑

i=1

1

2
ζn−i‖x(i)−Ab̂(i)‖2,

where ζ ∈ (0, 1] is the so called forgeting factor employed so as
to diminish the effect of past measurements. This cost function
can be effectively minimized by adopting the RLS approach. It is
worth pointing out that, the RLS algorithm lends itself nicely in the
online dictionary learning problem, since for the dictionary update
only the most recently received data vector and the most recently
estimated sparse vector are employed without being forced to store
the entire history of measurements.

Let us now turn our focus on the decentralized problem. Ideally,
we would like the dictionary estimate at step n to be computed as
follows:

Âk(n) = argmin
A

1

n

∑

k∈N

n∑

i=1

ζn−i 1

2
‖xk(i)−Ab̂k(i)‖

2, ∀k ∈ N .

(4)
Notice that (4) decouples over the rows of the dictionary, so the
minimization can be equivalently written for each one of the rows

â
(r)
k (n) of Âk(n), r = 1, . . . ,M :

â
(r)
k (n) = argmin

a

1

n

∑

k∈N

n∑

i=1

ζn−i 1

2
‖x

(r)
k (i)− a

T
b̂k(i)‖

2, (5)

where x
(r)
k (i) is the r–th coefficient of the observation vector.

It can be readily seen that the optimization (5) cannot be
minimized distributively, since the summation terms are coupled
over the global variable a. Nevertheless, following a similar phi-
losophy as in [17], [18], this problem can be efficiently solved in
a decentralized way. This can be achieved by reformulating the
optimization problem as follows, ∀r = 1, . . . ,M :

â
(r)
k (n) = argmin

ak

1

n

∑

k∈N

N∑

i=1

ζn−i 1

2
‖x(r)

k (i)− a
T
k b̂k(i)‖

2

s.t. ak = al, ∀l ∈ Nk, (6)

where Nk denotes the neighborhood of node k. Considering a
fully connected network, i.e., a network in which there exists a
path (possibly multihop) connecting any two nodes of the network,
then the problems (5), (6) are equivalent, e.g., [19], [18]. On top
of that, the formulation of (6) can be solved in a decentralized
fashion, via the ADMM, e.g., [20]. The algorithm, which solves (6)
distributively, is the so–called Distributed RLS (DRLS) algorithm,
originally proposed in [18] and will be employed here, for the
dictionary estimation.

Let us now describe in brief the steps of the DRLS algorithm.
Each node, k, at each iteration step n, computes the matrix

Φk(n) =
∑n

i=1 ζ
n−ib̂k(i)b̂

T
k (i) = ζΦk(n − 1) + b̂k(n)b̂

T
k (n),

as well as the vector p
(r)
k (n) =

∑n

i=1 ζ
n−ix

(r)
k (i)b̂k(i) =

ζp
(r)
k (n−1)+x

(r)
k (n)b̂k(n), r = 1, . . . ,M . Before computing the

estimates, the algorithm updates the Lagrangian multipliers, which

3293

Table I. Online Dictionary Learning Distributed RLS (OnDiRLS)

Initialize: Âk(0),Φk(0), p
(r)
k

(0), ∀k ∈ N , r = 1, . . . ,M
FOR n=1,2,. . .

FOR k=1,. . . ,N

Compute b̂k(n) by minimizing l(xk(n), Âk(n− 1))
Update Φk(n).

FOR r=1,. . . ,M

Update p
(r)
k

(n).

Compute â
(r)
k

(n) via the DRLS algorithm using x
(r)
k

(n), b̂k(n)
ENDFOR

Normalize the colums of Âk(n) to one.
ENDFOR

ENDFOR

Table II. The DRLS algorithm

Initialize: â
(r)
k

(n, 0) = â
(r)
k

(n− 1), v
(r)
k,l

(n, 0) = v
(r)
k,l

(n, 0)
FOR t=1,. . . ,R

Compute v
(r)
k,l

(n, t) via (7).

Compute â
(r)
k

(n, t) via (8).
ENDFOR

RETURN â
(r)
k

(n) := â
(r)
k

(n,R)

are associated to the equality constraints of (6). More specifically,
node k stores and updates a vector ∀l ∈ Nk as follows:

v
(r)
k,l (n, t) = v

(r)
k,l (n, t− 1) +

c

2
(â

(r)
k (n, t− 1)− â

(r)
l (n, t− 1)),

(7)

where c is a positive regularization parameter. The index t in (7) is
an index denoting the number of iterations the RLS algorithm runs
for each new datum and takes values t = 1, . . . , R; the larger the
R the better the algorithm performs, at the expense of an increased
complexity.

The estimate is then computed by:

â
(r)
k (n, t) = Φ

−1
k (n)p

(r)
k (n)

+
c

2
Φ

−1
k (n)



|Nk|â
(r)
k (n, t− 1) +

∑

l∈Nk\{k}

â
(r)
l (n, t− 1)





−
1

2
Φ

−1
k (n)

∑

l∈Nk

(v
(r)
k,l (n, t)− v

(r)
l,k (n, t)). (8)

again performing R internal iterations.

IV. THE PROPOSED ALGORITHM

The core steps of the proposed algorithm are summarized in
Table I. At some time instance, n, node k estimates the sparse

coding vector b̂k(n) by minimizing (3) using the most recently

estimated dictionary, denoted by Âk(n− 1). Put in mathematical

terms, b̂k(n) is the result of minimizing l(xk(n), Âk(n−1)) with
respect to b. Here, we employ the LARS algorithm, e.g., [21], for
the estimation of bk(n). However, it should be pointed out that
this choice is not restrictive and one can employ any sparse coding
algorithm, e.g., [6], [22]. In the sequel, the nodes cooperatively
minimize (4) by employing the distributed RLS, the steps of which
are given in Table II.

Theorem 1. The sequence of dictionaries, which will be the the
same from node to node due to the equality constraints, converges
to a stationary point of the objective function fn(·).

Proof. The proof, which follows a similar philosophy as the ones
in [10], [23], is omitted due to lack of space and will be presented
elsewhere.

Note that the problem, which is dealt with here, is nonconvex.
Thus, convergence to the global optimum cannot be guaranteed.
However, according to Theorem 1, the algorithm converges to a
stationary point of fn(·). As it is argued in [10], such points often
lead to a good performance in practical applications, such as image
denoising [1].

It should be highlighted that the convergence proof is possible
due to the two time scales incorporated in the dictionary update
phase. This is a notable difference to the online distributed al-
gorithm of [13], which operates in a single time scale, and the
theoretical properties of the algorithm are not studied.

Complexity: The most computationally expensive step of the
algorithm, is the inversion of the matrix Φk(n). However, it has
been shown in [18], that if ζ = 1, which is usually the case,
then a closed form expression for the inverse matrix is provided
via the matrix inversion lemma. In such case, the complexity of the
proposed algorithm amounts to O(RK2) coming from (8). Finally,
it should be stressed that the complexity of the LARS algorithm is
of order O(Mrs3), where s is the number of non-zero coefficients
of the sparse coding vectors.

V. NUMERICAL EXAMPLES

In this section, we present numerical experiments, using both
synthetic and real data, in order to validate the efficiency of the
proposed approach.

V-A. Dictionary Learning using Synthetic Data

In the first experiment, we consider a network comprising N = 5
nodes. The data vectors are of dimension M = 20, the dimension
of the dictionary atoms equals K = 40 and the number of nonzero
coefficients of the sparse coding vectors is set to 3. We also
assume that the observation vectors are contaminated with additive
noise, following Gaussian distribution with zero mean and variance
equal to 0.01. All the entries of A are drawn independently at
random from a uniform distribution in the [−0.5, 0.5] and then the
columns of the matrix are normalized. We compare the performance
of the proposed algorithm with two variants of the algorithmic
scheme in [10] and with the algorithm of [13], called here Online
Distributed Gradient Descent (OnDiGrad). It is worth pointing out
that, the algorithm of [10] does not operate in a distributed fashion.
The previously mentioned variants, which will be explained right
after, are proper reformulations in order the scheme to be able
to work distributively. In the first one, called here by Online
Dictionary Learning Centralized (OnDiLeCe), we assume that the
data are centrally available and the algorithm runs over the whole
amount of data. In the second variant, which is denoted by Online
Dictionary Learning Individual (OnDiLeIn), we assume that the
nodes compute the dictionary without cooperation and act as
individual learners, instead. The reasoning of this experiment is to
compare the proposed algorithm with another scheme, of similar
complexity, in the case where the whole information is exploited
(OnDiLeCe) and in the case where the nodes use only their local
data (OnDiLeIn). Furthermore, the proposed scheme is compared
to the OnDiGrad, which is suitable for online dictionary learning
in distributed environments. The proposed scheme, OnDiLeCe
and OnDiLeIn run R = 10 iterations, for each received datum,
so as to compute the dictionary and for the proposed algorithm
c = 0.7 (see (7), (8)). The parameters of the OnDiGrad are
chosen so that the algorithm converges in the same error floor
as the OnDiLeIn. The performance metric adopted is given by

1− (1/N)
∑

k∈N |a(j)Ta
(j)
k (n)| where a(j) (a

(j)
k (n)) stands for

the j–th column of the true (estimated) dictionary, taking care for
the permutation ambiguity in the dictionary atoms. Finally, the

3294

Fig. 1. Performance evaluation using synthetic data.

performance curves result from an ensemble average of 100 in-
dependent experiments. Fig. 1 illustrates that the proposed scheme
outperforms significantly the OnDiLeIn scheme, since it computes
in a fewer number of iterations a dictionary providing a lower error.
Moreover, all algorithms outperform OnDiGrad, which is expected
since the latter algorithm is of lower complexity. Interestingly, the
OnDiLeCe slightly outperforms OnDiRLS; this verifies that the
cooperation among the nodes leads us close to the centralized
performance.

V-B. Image Denoising via Dictionary Learning

In this subsection, we validate the performance of the OnDiRLS
in a real world application and specifically in an image denoising
problem. The denoising performance of the proposed algorithm will
be evaluated against the K-SVD algorithm [4] using the 256×256
test image commonly known as “boats”. The aim here is a vis-a-
vis comparison with a widely acclaimed batch algorithm, which is
“allowed” to operate in an advantageous set up, compared to our
proposed algorithm; that is, all the data are are provided collectively
and also the algorithm is allowed to pass many times through
the whole batch of data during the dictionary learning phase. On
the contrary, in the case of our proposed algorithm, the data are
distributed in N = 5 nodes without any node having access to
the data of the rest of the nodes and any kind of data reuse (that
has been previously processed), is not allowed (due to its online
nature).

With respect to the denoising procedure, there are several ap-
proaches one could follow, [1]. Since our task here is not to opti-
mize such an approach but to offer the means for a fair comparison,
we adopted a simplified version of the denoising method proposed
in [1], [24], [6]. In particular, all possible overlapped patches of
size 8 × 8 are considered, counting to (256 − 8 + 1)2 = 62001
patches in total, which are going to be the data used for the learning
of the dictionary. Specifically, the patches are extracted from the
noisy image, then each one of them is vectorized in lexicographic
order and the resulted data vectors are gathered in a (64× 62001)
matrix for the K–SVD case or are randomly distributed to the N
nodes for the proposed algorithm case. In the sequel, a dictionary
for each one the competing methods is trained. Finally, each one of
the patches is denoised separately based on its sparse representation
on the estimated dictionaries. Note that for the whole image each
one of its pixels apparently belongs to more than one patch (due to
the fact that they are overlapped). Accordingly, the final denoised

Fig. 2. The original image, the noisy one, and the denoised image.

Table III. Image Denoising

PSNR (noisy Image) KSVD OnDiRLS

16 22.9 24
18 25.5 26.2
22 28.8 29.1
28 33.8 32.5

value of each of the image pixels is computed as the average of
the corresponding pixel of all the associated patches [1].

The original picture, the noisy one, and the one resulting after
the denoising process of the proposed algorithm can be seen in Fig.
2. Furthermore, the PSNR for the noisy and the recovered images is
given in Table III. There, it can be observed that the performance of
the OnDiRLS is slightly better compared to that of the the K–SVD
in the lower PSNR scenarios and that the K–SVD leads to better
denoising in the high PSNR regime. It appears that the distributed
operation of the proposed algorithm renters it relatively robust to
the noise.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel algorithm for online distributed dictionary
learning is proposed. At each iteration step, in which a datum
is received at each node of the network, the LARS algorithm
computes the sparse coding vector, exploiting the most recent
dictionary estimate and the new observation. In the sequel, the
nodes of the network cooperate, via the DRLS algorithm, in order to
estimate the common dictionary. The performance of the proposed
scheme is validated both with synthetic and real data.

Future research focuses on the task of developing low–
complexity versions of the algorithm for online distributed dic-
tionary learning.

VII. REFERENCES

[1] M. Elad, Sparse and redundant representations: from theory
to applications in signal and image processing. Springer,
2010.

[2] S. Theodoridis, Y. Kopsinis, and K. Slavakis, Sparsity-aware
learning and compressed sensing: An overview. Academic
press, 2014.

[3] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Transactions on Image Processing, vol. 15, no. 12, pp. 3736–
3745, 2006.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K–svd: An al-
gorithm for designing overcomplete dictionaries for sparse
representation,” IEEE Transactions on Signal Processing,
vol. 54, no. 11, pp. 4311–4322, 2006.

3295

[5] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary
learning,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 34, no. 4, pp. 791–804, 2012.

[6] S. Theodoridis, Machine Learning: A Bayesian and Optimiza-
tion Perspective. Academic Press, 2015.

[7] S. Mallat, A wavelet tour of signal processing: the sparse
way. Academic press, 2008.

[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y.
Zhu, “Tools for privacy preserving distributed data mining,”
ACM SIGKDD Explorations, vol. 4, no. 2, pp. 28–34, 2002.

[9] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal
Processing Magazine, vol. 28, no. 2, pp. 27–38, 2011.

[10] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning
for matrix factorization and sparse coding,” The Journal of
Machine Learning Research, vol. 11, pp. 19–60, 2010.

[11] K. Skretting and K. Engan, “Recursive least squares dictio-
nary learning algorithm,” Signal Processing, IEEE Transac-
tions on, vol. 58, no. 4, pp. 2121–2130, 2010.

[12] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning
over distributed models,” arXiv preprint arXiv:1402.1515,
2014.

[13] P. Chainais and C. Richard, “Distributed dictionary learning
over a sensor network,” arXiv preprint arXiv:1304.3568,
2013.

[14] J. Liang, M. Zhang, X. Zeng, and G. Yu, “Distributed dictio-
nary learning for sparse representation in sensor networks,”
IEEE Transactions on Image Processing, vol. 23, no. 6, pp.
2528–2541, June 2014.

[15] K. Slavakis and G. B. Giannakis, “Online dictionary learning
from big data using accelerated stochastic approximation
algorithms,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
16–20.

[16] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse
coding algorithms,” in Advances in neural information pro-
cessing systems, 2006, pp. 801–808.

[17] G. Mateos and G. B. Giannakis, “Distributed recursive least-
squares: Stability and performance analysis,” IEEE Transac-
tions on Signal Processing, vol. 60, no. 7, pp. 3740–3754,
2012.

[18] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Distributed
recursive least-squares for consensus-based in-network adap-
tive estimation,” IEEE Transactions on Signal Processing,
vol. 57, no. 11, pp. 4583–4588, 2009.

[19] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus
in ad hoc wsns with noisy linkspart i: Distributed estimation
of deterministic signals,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 1, pp. 350–364, 2008.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed
computation: numerical methods. Belmont, MA: Athena–
Scientific, 1999.

[21] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least
angle regression,” The Annals of statistics, vol. 32, no. 2, pp.
407–499, 2004.

[22] E. J. Candès and M. B. Wakin, “An introduction to compres-
sive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 21–30, 2008.

[23] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace
learning and imputation for streaming big data matrices and
tensors,” arXiv preprint arXiv:1404.4667, 2014.

[24] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation
for color image restoration,” IEEE Transactions on Image
Processing, vol. 17, no. 1, pp. 53–69, 2008.

3296

