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ABSTRACT
This paper considers the problem of recovering a k-sparse, N -
dimensional complex signal from Fourier magnitude measurements.
It proposes a Fourier optics setup such that signal recovery up to
a global phase factor is possible with very high probability when-
ever M & 4k log2(N/k) random Fourier intensity measurements
are available. The proposed algorithm is comprised of two stages:
An algebraic phase retrieval stage and a compressive sensing step
subsequent to it. Simulation results are provided to demonstrate the
applicability of the algorithm for noiseless and noisy scenarios.

Index Terms— Phase retrieval, compressive sampling, Fourier
measurements

1. INTRODUCTION

In many applications involving linear signal measurement processes,
the measurement results are magnitude-only or solely unreliable
phase information is available. Phase retrieval addresses this prob-
lem by striving to recover the signal exclusively from the absolute
values of the linear measurements. Fourier optics is one of the
application areas where the phase retrieval problem is commonly
faced. An exemplary setting is shown in Fig. 1 (the mask belongs
to the recovery setup, assume it to be nonexistent for the moment).
The object of interest is illuminated by a light or x-ray source. As
a result, a diffraction pattern x[n] is produced, where n denotes the
discrete spatial coordinate. Subsequently, this diffraction pattern
x[n] is transformed by the lens into the Fourier domain. Unable to
measure the phase, one can only acquire the intensity measurements
|x̂[ω]|2 of the Fourier transform x̂[ω]. The phase retrieval problem
is now to reconstruct the diffraction pattern x[n] from the intensity
measurements |x̂[ω]|2. In this paper, we are interested in the case
where x ∈ CN is known to be k-sparse.

Non-sparse phase retrieval has been a very active research area
since the seminal work of Balan et al. [1]. It is proven in [2] that
4N − 4 measurements are sufficient, and in [3] that 4N − o(N)
measurements are necessary for perfect recovery up to a global phase
factor. Minimal deterministic constructions yielding injectivity with
4N − 4 measurement vectors are provided in [4, 5]. Also, explicit
deterministic measurement ensembles ensuring injectivity for almost
every signal in CN are proposed in [6, 7].

Compressive phase retrieval of sparse signals attracted some in-
terest in recent years. It was shown in [8] that 8k − 2 generic inten-
sity measurements are sufficient for recovery, whereas they needed
O(k lnN) measurements for stable recovery via convex program-
ming. The theoretical lower bound for the sufficient number of mea-
surements required for a k-sparse signal was improved in [9] toM =

This work was partly supported by the German Research Foundation
(DFG) under Grant PO 1347/2-1 and BO 1734/20-1.

lig
ht

or
x-

ra
y

so
ur

ce

object

x

mask

ps

lens

ys

Fourier domain

ŷs
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Fig. 1. A measurement setup for phase retrieval problem which can
often be found in optical applications.

4k− 2. However, to the best of our knowledge there is no algorithm
approaching this bound presently. Using PhaseLift [10], Ohlsson
et al. [11] proposed a recovery algorithm from O(k2 logN) mea-
surements. However, this technique is based on semidefinite pro-
gramming and suffers from high computational complexity. In [12],
a technique relying on generalized approximate message passing is
presented. While the simulation results in this work demonstrate
some advantages in terms of the number of the required measure-
ments and computational complexity, no theoretical recovery guar-
antee was derived.

The characteristics of the measurement vectors play a key role
in the practical applicability of the algorithms. None of the previ-
ously mentioned works focus on measurement sets that could model
a Fourier optics system as in Fig. 1 (see, e.g., [13, 14, 15, 16, 17, 18]).
In fact, the first paper about compressive phase retrieval [19] was ad-
dressing the very problem that we are trying to solve in the present
paper, i.e., the recovery problem of a k-sparse complex signal x ∈
CN from Fourier intensity measurements |x̂[ω]|2. To our knowl-
edge, the only work after [19] that directly addressed this problem
is the recent paper by Pedarsani et al. [7]. Based on a sparse graph
codes framework, this paper provides a low complexity algorithm
that achieves perfect reconstruction with very high probability using
14k measurements.

The present paper proposes a two step procedure to recover al-
most every x ∈ CN by random Fourier intensity measurements us-
ing 4 masks (see Fig. 1). First, we recover the phases of our mea-
surements up to a global phase using the algorithm proposed in [6].
Afterward, the sparse signal is reconstructed using the standard com-
pressed sensing approach, i.e., the `1-minimization technique. We
provide numerical simulations to show the success rates of the algo-
rithm and its behavior under additive measurement noise.
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2. SIGNAL MODEL AND NOTATIONS

Notations We consider signals in the N -dimensional complex
Euclidean vector space CN . These signals are written as x =
(x[1], x[2], . . . , x[N ])T. The inner product in CN is 〈x, y〉CN =∑N
n=1 x[n] y[n] = y∗x where the bar denotes the complex conju-

gate, and y∗ is the conjugate transpose of y. The norm, induced
by the inner product is denoted by ‖x‖ =

√
〈x, x〉, whereas

‖x‖`1 :=
∑N
n=1 |x[n]| stands for the `1 norm. The unitary dis-

crete Fourier transform (DFT) of x ∈ CN is given by x̂ = Fx
where F denotes the DFT matrix with entries

[F ]m,n = 1√
N

e−i2π(m−1)(n−1)/N , m, n = 1, . . . , N

in its mth row and nth column.
A vector x ∈ CN is called k-sparse if ‖x‖0 := | supp(x)| ≤ k

where supp(x) = {n : x[n] 6= 0}, i.e., if the support length is at
most equal to k. The set of all k-sparse vectors in CN is denoted by

ΣNk = {x ∈ CN : ‖x‖0 ≤ k} .

We write x�y for the point-wise product of two vectors x, y ∈ CN ,
i.e., (x� y)[n] = x[n]y[n] for all n = 1, . . . , N , and T = {z ∈ C :
|z| = 1} stands for the unit circle in the complex plane C.

Problem Statement Let x ∈ ΣNk and let {ϕm}Mm=1 be a set of
measurement vectors in CN . The compressive phase retrieval (CPR)
problem is to reconstruct x from the intensity measurements

bm = |〈x, ϕm〉|2 , m = 1, . . . ,M . (1)

Recovery will only be unique up to a unitary constant because if x
satisfies (1) then also cx with |c| = 1 will satisfy (1). Consequently,
we always consider (1) as a mapping AΦ : CN\T → RM from the
quotient space of CN modulo T into RM .

3. GENERAL APPROACH

This section proposes a general approach for compressive phase re-
trieval problem. Thereafter, we will give some concrete realizations
applicable to Fourier optics systems such as Fig. 1. We propose
to split the whole recovery problem into a two step procedure: a
phase retrieval step and a sparse recovery step. More precisely, our
methodology is based on the following two ingredients:

(i) Let A ∈ CL×N such that every x ∈ ΣNk can be recov-
ered from the measurements y = Ax ∈ CL as a solution
of minz∈CN ‖z‖0 subject to Az = y.

(ii) Let Ψ = {ψm}Mm=1 be a set of M vectors in CL such that
the mapping AΨ : CL\T→ RM is injective.

Therewith, we define the measurement vectors

ϕm := A∗ψm ∈ CN , m = 1, . . . ,M . (2)

By this construction of measurement vectors, one guarantees that ev-
ery k-sparse vector in CN can be recovered from the measurements
(1), provided the number M of measurements is large enough.

Theorem 1: If M ≥ 8k − 4 then there exist sets of measurement
vectors {ϕm ∈ CN}Mm=1 such that every x ∈ ΣNk can be recovered
from the quadratic measurements (1), up to a unitary factor.

Proof: Let x ∈ ΣNk . By the definition of the measurement vectors
ϕm in (2), we can write (1) as

bm =
∣∣〈x,A∗ψm〉CN

∣∣2 =
∣∣〈Ax,ψm〉CL

∣∣2 =
∣∣〈y, ψm〉CL

∣∣2 (3)

with y = Ax ∈ CL. It is known [2] that if M ≥ 4L − 4 then
there are a sets of measurement vectors {ψm ∈ CL}Mm=1 which
have property (ii). It follows that y ∈ CL can be determined from
the magnitude measurements {bm}Mm=1 given in (1), up to a unitary
constant. Moreover, if L ≥ 2k then it is known [20] that there exist
matrices A ∈ CL×M which have the property (i). Consequently the
k-sparse vector x can be reconstructed from y.

Remark: The previous result and the proof are similar to [8]. How-
ever, our approach gives immediately explicit constructions of mea-
surement systems as well as corresponding recovery algorithms. In
particular, there exist explicit constructions for matrices A which
have property (i) [21], and there exist several known systems of vec-
tors which have property (ii) [4, 5].

The number of necessary measurements, given in Theorem 1 is
based on the known results on the minimal number of measurements
necessary for the phase retrieval step and compressive sensing step.
To get stable recovery algorithms, one may need more measurements
than required in Theorem 1. Following the described methodology,
one has to choose concrete realizations for A and Ψ and different
algorithms for both recovery steps. For example,
• Choose Ψ as random vectors as in [10] and use PhaseLift for

the recovery in the phase retrieval step.
• Pick A as a random matrix and then solve the basis pursuit

problem in step 2.
Remark: The present approach also extends trivially to sparse sig-
nals in CN×N by regarding them as vectors in CN

2

.

4. CPR – GAUSSIAN MEASUREMENTS

In the following, we will give a concrete realization of the previously
introduced methodology for sparse phase retrieval which yields a
low complexity recovery algorithm. To this end, we have to choose
a matrix A with property (i) and vectors {ψm} with property (ii).
For the set {ψm}, we use the vectors proposed in [6]:

A set of measurement vectors Consider the set of M = 4L − 4
measurement vectors Ψ = {ψs,l}s=1,...,4

l=1,...,L−1 in CL given by:

ψ1,l = α e1 + β el+1, ψ3,l = α e1 − β el+1,

ψ2,l = β e1 + α el+1, ψ4,l = −β e1 + α el+1,
(4)

where {el}Ll=1 is the canonical orthonormal basis in CL, and with

α =

√
1
2

(
1− 1√

3

)
and β = e−i5π/4

√
1
2

(
1 + 1√

3

)
. (5)

It can be shown [6] that the mappingAΨ : CL\T→ R4L−4 associ-
ated with the set Ψ is injective on the subspace SΨ = {y ∈ CL/T :
y[1] 6= 0}.
Theorem 2: Let A ∈ CL×N be a Gaussian or Bernoulli random
matrix, and set

ϕs,l := A∗ψs,l ∈ CN , s = 1, . . . , 4, l = 1, . . . , L− 1 ,

with the vectors ψs,l defined in (4). If M = 4L− 4 & 8k ln(N/k),
then every x ∈ V := {x ∈ ΣNk : (Ax)[1] 6= 0} can be recovered
(up to a global phase) from the intensity measurements
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bs,l = |〈x, ϕs,l〉|2 , s = 1, . . . , 4 , l = 1, . . . , L− 1.

with high probability.

Proof: As in Theorem 1, by the definition of the measurement vec-
tors, we have bs,l = | 〈y, ψs,l〉CL |2 with y := Ax ∈ CL. Since
AΨ : CL\T→ R4L−4 is injective on SΨ and y[1] 6= 0, y can be re-
constructed from {bs,l}, up to a global phase. By the assumption of
the theorem L > 2k ln(N/k). Therefore, standard CS theory guar-
antees [21] thatA has the null space property (with high probability)
and so x ∈ ΣNk can be recovered from the linear measurements
y = Ax ∈ CL.

Remark: The estimate for the necessary number of measurements
M and the notion ”with high probability” can be made precise using
well known results from CS, see, e.g., [21].

Remark: Note also, that our construction provides a natural recov-
ery algorithm. In the first step, y = Ax is determined from the mea-
surements {bs,l} using the algorithm proposed in [6]. Afterwards the
k-sparse vector x can be determined from y by any algorithm known
for sparse signal recovery. For concreteness, we assume that basis
pursuit is used, i.e., x ∈ ΣNk is the unique solution of the following
convex minimization problem:

min
z∈CN

‖z‖`1 subject to Az = y . (6)

5. CPR – FOURIER MEASUREMENTS

In many applications, the matrixA in (2) cannot be determined arbi-
trarily. Here, we adapt our idea from the last section to the setup in
Fig. 1. In this setting, the object of interest is illuminated and the re-
sulting diffraction pattern x[n] is modulated by suitable masks with
transmittance functions ps[n], such that x�ps is the resulting signal
after each mask. Subsequently, the lens transforms the modulated
signal into the frequency domain. As we are interested in recover-
ing spatially sparse signals x ∈ ΣNk , we exploit this sparsity and
take only random frequency measurements M < N , where M is
determined by the compressive sensing theory.

In particular, we propose to use four masks with the following
transmittance functions:

ps[n] = as δ[n] + bs ,
s = 1, . . . , 4
n = 1, . . . , N

, (7)

where δ[n] stands for the delta function defined by δ[1] = 1 and
δ[n] = 0 for n 6= 1, and with the constants

a1 = α , a2 = β , a3 = α , a4 = −β ,
b1 = β , b2 = α , b3 = −β , b4 = α ,

and where α and β are defined as in (5). Based on these masks, we
can prove the following recovery result:
Theorem 3: Consider the measurement setup of Fig. 1 with the four
masks ps ∈ CN as defined in (7). Let L ⊂ {1, . . . , N} be a set of
randomly chosen sampling points in the Fourier domain. If

L = |L| > C k log(N),

with an appropriated constant C, then every x ∈ ΣNk with x[1] 6= 0
can be recovered (up to a global unitary phase) from the 4L intensity
measurements

bs,l = |F(x� ps)[l]|2 ,
s = 1, . . . , 4
l ∈ L

with high probability.
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Fig. 2. Empirical success rate versus k/M for different number of
measurements M and signal dimension N = 512.

Remark: So any k-sparse vectors in CN can be recovered from
M & 4Ck log(N) intensity measurements. The constant C and the
statement “with high probability” can be made more precise using
results in CS with partial Fourier measurements [22]. We will show
in Sec. 6, by means of numerical simulations, that we need approx-
imately M & 4k log2(N/k) measurements for recovery with high
probability.

Remark: Note also, that we have again a very mild restriction on
the signal space, namely that the first signal entry x[1] must not
vanish. This restriction is necessary to allow phase retrieval in the
first recovery step [6]. Moreover, we can get around of this restric-
tion by shifting the object by 1 and placing an additional mask with
p̃[n] = tδ[n], n = 1, . . . , N + 1 , t 6= 0 after the object.

Proof: Direct calculation shows that

ŷs = F(x� ps) = Dsx̃

where ŷs ∈ CL is the vector of the Fourier transform of x � ps
sampled at the points L, the vector

x̃ = (x[1]/
√
N, x̂T)T = (x[1]/

√
N, x̂[l1], . . . , x̂[lL])T ∈ CL+1

contains x[1]/
√
N at the first position and the Fourier transformFx,

sampled at the set L = {l1, . . . , lL} at the other positions, andDs ∈
CL×(L+1) are matrices of the form

Ds =


as bs 0 · · · · · · 0

as 0 bs 0 · · · 0
...

...
. . .

. . .
. . .

...
as 0 · · · 0 bs 0

as 0 · · · · · · 0 bs

 .

From the simple structure of Ds, direct calculation shows that the
measurements can be written as

bs,l = |ŷs[l]|2 = | 〈x̃, ψs,l〉 | ,
s = 1, . . . , 4,
l = 1, . . . , L

(8)

where the set Ψ = {ψs,l} of CL+1-vectors is defined as in (4).
Again, we use that the corresponding mapping AΨ : CL+1\T →
R4L is injective. Consequently, x̃ ∈ CL+1 can be recovered from
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k

Fig. 3. Number of measurements M necessary to recover a k-sparse
signal x ∈ ΣNk of dimension N=512.

the measurements (8), up to a constant phase factor. Discarding the
first entry of x̃, we obtain in particular x̂ which can be written as
x̂ = FLx, where FL ∈ CL×N stands for the partial DFT matrix
with the L rows, indexed by the random set L, of the N × N DFT
matrix F . Since |L| > Ck log(N), it is known [22] that the k-sparse
vector x can be recovered from x̂ (with high probability) using (6)
with A = FL.

6. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to support and dis-
cuss our theoretical results. Thereby, we will concentrate on the
setup based on Fourier measurements discussed in Sec. 5. As de-
scribed, the overall recovery algorithm is based on the algebraic al-
gorithm for PR described in [6], followed by Basis Pursuit (6) which
was implemented using SPGL1 [23].

Throughout, we use signals x ∈ CN of dimension N = 512.
Our test signals are k-sparse with a uniformly randomly chosen sup-
port with i.i.d. complex Gaussian entries with variance 1. Measure-
ments are assumed to be disturbed by additive white Gaussian noise

bs,l = |F(x� ps)[l] + νs,l|2 ,
s = 1, . . . , 4
l = 1, . . . , |L| ,

where νs,l ∼ N (0, σ2
ν) are independent, normally distributed com-

plex random variables with variance σ2
ν . The signal-to-noise ratio

(SNR) is defined as SNR = ‖F(x� ps)‖2/E[‖ν‖2]. After we re-
covered x from the noisy measurements, we determined the relative
mean squared errorMSE = ‖x− x̄‖22/‖x‖22 where x̄ stands for the
estimated signal with the corrected phase.

First, we examined the noiseless case at SNR = 100dB. We
performed 2000 simulations to investigate empirically the number of
measurements M which are necessary to recover a k-sparse signal.
The results are presented in Fig. 2. It shows that we need approxi-
mately M ≈ 20k measurements for small sparsity values k ≈ 10,
and M ≈ 10k for sparsity values of about k = 100.

To investigate the relation between the necessary number of
measurements M and the sparsity k further, Fig. 3 plots M versus
k for success rates of 99% and 95%, respectively. Thereby, we
regarded a reconstruction as successful whenever the MSE was less
than 10−5. For small values of k, the graphs are well approximated
by the relation M ≈ 4k log2(N/k), which is also shown.

no
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B
)

SNR (dB)

Fig. 4. Normalized MSE versus SNR for the recovery algorithm
proposed in Sec. 5 for sparse signals x ∈ ΣNk withN = 512, k = 12
and with M = 256 intensity measurements.

Finally, we studied the stability behavior of the recovery algo-
rithm under additive noise. Simulations for signal dimension N =
512, sparsity k = 12 and M = 256 measurements are shown in
Fig. 4. The simulation results were averaged over 103 trials. In the
simulations, we distinguished also between the situation, where the
amplitude of the first signal entry was fixed |x[1]| = 1, and where
it was chosen randomly, respectively. We see that the overall algo-
rithm is stable under additive noise. The simulations show that the
reconstruction error ‖x − x̄‖2 is approximately proportional to the
norm ‖ν‖2 of the additive noise. One obtains a slightly better per-
formance, if the amplitude of the first signal component x[1] is fixed.

7. DISCUSSION – OUTLOOK

The sparse phase retrieval approach of the present paper is based on
a two step recovery procedure: 1) a phase retrieval step, 2) a sparse
signal recovery step. For the first step, we proposed to apply the alge-
braic algorithm proposed in [6], for the sparse recovery, we proposed
to use basis pursuit (BP). The advantage of this composition, is that
the algebraic phase retrieval algorithm has a very low complexity,
which only scales linearly with the number M of measurements. So
the overall complexity is mainly determined by the `1 minimization
(6) of basis pursuit which only operates in the dimension L = M/4.
Moreover, since both separate algorithms are stable, also the over-
all sparse phase retrieval is stable. The derivations of concrete error
bounds is left as a future work. It will be based on the known stabil-
ity analysis for BP and for phaseless reconstruction in [6].

It was shown that the proposed methodology can also be used
to design deterministic masks for practical setups as in Fig.1, which
are based on Fourier measurements. Our analysis and simulations
showed no degradation of the performance for such Fourier measure-
ments, compared to Gaussian measurements, as observed in [12].

By the two-staged nature of our recovery methodology, other
methods for phase retrieval may be applied as well. For example,
[7] recently proposed masks similar to (7) for phase retrieval, but
where only 3 instead of 4 masks are needed. Applying these masks
instead of (7) would reduce the overall number of measurements, and
it would be interesting to compare the stability behavior with those
masks. Moreover, it is planned to extend the presented approach to
sparse infinite-dimensional signal spaces following ideas from [24,
25, 26].
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