
SPECTRUM CARTOGRAPHY USING QUANTIZED OBSERVATIONS

Daniel Romero1, Seung-Jun Kim2, Roberto López-Valcarce1 and Georgios B. Giannakis3
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ABSTRACT

This work proposes a spectrum cartography algorithm used for
learning the power spectrum distribution over a wide frequency
band across a given geographic area. Motivated by low-complexity
sensing hardware and stringent communication constraints, com-
pressed and quantized measurements are considered. Setting out
from a nonparametric regression framework, it is shown that a
sensible approach leads to a support vector machine formulation.
The simulated tests verify that accurate spectrum maps can be con-
structed using a simple sensing architecture with significant savings
in the feedback.

1. INTRODUCTION

The importance of wireless spectrum situational awareness is crit-
ically recognized in cognitive radio (CR), where the goal is to im-
prove the overall spectral efficiency through agile adaptation to spec-
trum availability via dynamic spectrum access (DSA) [1]. Acquiring
information regarding how the radiated power from the interferers
distributes across space and frequency is instrumental for ensuring
the quality of service of CRs, as well as controlling interference to
the incumbent primary systems. Medium access and network opti-
mization may also benefit profoundly from such information.

Acquiring the spectrum landscape, termed as spectrum cartog-
raphy, has received significant attention in the CR literature [2–8].
Existing techniques rely on the measurements reported by a network
of sensors, which may be the CRs themselves, and apply regression
procedures to estimate the signal power at arbitrary locations. Ex-
amples include kriging [2], sparse regression [3–5], semi-parametric
regression [6], and dictionary learning [7,8]. Although some of these
techniques do not take into account the frequency dimension, esti-
mating power over both space and frequency can obtain numerous
benefits since the frequency dimension allows incorporating prior
information and is capable of estimating metrics such as signal-to-
noise ratio [5]. Other intimately related techniques include [9, 10],
where channel gains between arbitrary locations are interpolated.

Developing a spectrum sensing strategy that takes into account
location and propagation information may significantly improve the
estimation performance, which enhances the spectral efficiency of
CRs by allowing aggressive spatial reuse [11, 12]. For this reason,
spectrum cartography techniques provide an important improvement
over existing cooperative spectrum sensing schemes, which tradi-
tionally neglect this information [13–15].
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Spatial regression of power spectral density (PSD) was obtained
via parametric and nonparametric techniques based on periodogram
measurements [5, 6]. However, obtaining and reporting such statis-
tics may be too complex and bandwidth-hungry for distributed sen-
sors with limited hardware and resources. Acquiring periodogram
estimates is quite demanding on sensing hardware since the imping-
ing waveforms must be sampled at the Nyquist rate, and long av-
eraging windows have to be implemented in the frequency domain.
Furthermore, the feedback of the high-resolution periodogram mea-
surements through the control channels shared by a large number of
sensor nodes may limit the acquisition speed, hindering real-time up-
date of PSD maps, which is essential in time-varying environments.
For these reasons, compressed spectrum measurements and low-rate
communication protocols are well motivated [15, 16].

This work aims at alleviating those limitations by proposing
a spectrum cartography algorithm where the map estimate is con-
structed from highly quantized versions of compressed measure-
ments of wideband signals. Simple wideband converters such as
random filters [15, 16] or analog-to-information converters [17, 18]
are considered. The latter allow sampling rates well below the
Nyquist rate, which is especially convenient in wideband scenarios.
On the other hand, low-rate feedback, where only a few bits are
used to represent a measurement, allows efficient control channel
implementations in multipoint-to-point medium access topologies,
such as the one used in the IEEE 802.22 standard for DSA [19].

This work also establishes an interesting connection between the
problem of spectrum cartography and machine learning. Motivated
by the robustness considerations for quantized measurements, a nat-
ural nonparametric regression formulation for spectrum map con-
struction transitions smoothly to a support vector machine (SVM)
formulation. This perspective allows to exploit established efficient
numerical methods and provides theoretical understanding of the re-
sulting algorithms, since SVMs are universal approximators based
on solid statistical learning foundations [20, 21].

Spatial regression of power measurements was considered with-
out taking into account the frequency domain in [2–4]. Maps captur-
ing both space and frequency were constructed in [5, 6], but the is-
sue of sensing and communication complexity was not investigated.
A simple sensor architecture was employed to construct the PSD
in [15], but the spatial dimension was not incorporated. Our work
addresses spatial and frequency domain spectrum cartography with
minimal sensing and communication overhead. In order to capture
the prior information while maintaining flexibility, the spatial field
to be learned is modeled parametrically in the frequency dimension
while nonparametric techniques are employed in space.

This paper is organized as follows. Sec. 2 describes the system
model. The spectrum cartography problem and the corresponding
learning algorithm are explained in Sec. 3, whereas numerical tests
and conclusions are respectively presented in Secs. 4 and 5.
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2. MODEL DESCRIPTION

This section introduces a model for the PSD map, which hinges on a
frequency-domain basis expansion model. Subsequently, the quan-
tized observation model is put forth.

2.1. PSD map model

Suppose that M − 1 interference sources, which may correspond to
the transmitters of the primary system, are located in a geographical
region. The m-th source transmits a signal

√
γ(m)s(m)(t), where

γ(m) > 0 represents the transmit-power and s(m)(t) a (possibly
complex) wide-sense stationary (WSS) signal normalized such that
E{|s(m)(t)|2} = 1, ∀t. The PSD of s(m)(t) is denoted as φ(m)(f)

and and satisfies
∫ 1

0
φ(m)(f)df = 1 due to the normalization. For

simplicity, we assume that φ(m)(f) is known, which is well moti-
vated in many communication scenarios where the primary system
obeys a transmission standard (e.g. DVB or ATSC in TV bands) and
specific spectrum regulations, since in those cases bandwidths, car-
rier frequencies, transmission masks, roll-off factors, and so forth,
are publicly available [22–24]. In order for those functions to be
linearly independent, all transmitters operating on a certain band are
assigned the same basis function. If φ(m)(f) is unknown, the same
scheme presented in this paper can be applied by introducing a basis
expansion in the frequency domain [5, 6].

The signal at position x ∈ R2 resulting from the contributions
of the M − 1 uncorrelated sources can be expressed as

rx(t) =

M−1∑
m=1

r(m)
x (t) + r(M)

x (t) =

M∑
m=1

r(m)
x (t) (1)

where r(m)
x (t), m = 1, . . . ,M − 1, is the component propagating

from them-th transmitter and r(M)
x (t) is noise with normalized PSD

φ(M)(f). Assuming frequency-flat channels, the PSD of rx(t) can
be written as

ψx(f) =

M∑
m=1

l(m)
x φ(m)(f) (2)

where l(M)
x is the noise power at sensor x, and the coefficients l(m)

x ,
m = 1, . . . ,M−1, subsume the transmit-power γ(m) and the prop-
agation effects between the m-th source and the position x. As ex-
plained in [5, Sec. II], this representation also applies to frequency
selective cases where the impulse response of the channel is station-
ary and uncorrelated along the lag dimension.

We observe from (2) that the variable l(m)
x , m = 1, . . . ,M − 1,

represents the power of the signal of them-th transmitter at the point
x. The function ψx(f) may be thought of as a map that represents
the distribution of power over space and frequency and our goal is to
estimate it. Since the basis functions φ(m)(f) are known, estimating
ψx(f) is tantamount to estimating l(m)

x for allm, which will be seen
as M functions of the spatial coordinate x.

2.2. Observation model

The observation model proposed here captures a couple of simple
sensing architectures. One of them, chosen here for the ease of
exposition, is based on pseudo-random filters [15]. An alternative
implementation performs compressive acquisition via the recently
proposed analog-to-information converters [17,18], which allow the
acquisition of wideband signals with low power consumption and
minimal hardware costs [22].

Suppose that a sensor at position x passes rx(t) through a linear
time-invariant (LTI) filter with impulse response gx(t) and measures
the power of the output. The true value of this power is given by

ηx := E
{
|gx(t) ? rx(t)|2

}
=

∫ 1

0

|Gx(f)|2ψx(f)df (3)

where ? denotes convolution, and Gx(f) is the Fourier transform of
gx(t). From (2), it follows that

ηx =

M∑
m=1

l(m)
x

∫ 1

0

|Gx(f)|2φ(m)(f)df. (4)

By defining φ(m)
x :=

∫ 1

0
|Gx(f)|2φ(m)(f)df and forming the vec-

tors φx := [φ
(1)
x , . . . , φ

(M)
x ]T and l(x) := [l

(1)
x , . . . , l

(M)
x ]T , where

the notation emphasizes that l(x) is a function of the spatial coordi-
nate x, we can rewrite ηx in (4) simply as

ηx = φTx l(x). (5)

The sensor computes an estimate of ηx, denoted as η̂x, and uni-
formly quantizes it according to a map Q(η) = bη/(2ε)c ∈ Z,
where 2ε is the quantization step, and the result q̂x = Q(η̂x) is sent
to the fusion center (FC) through a control channel. Depending on
the quality of the estimate, either q̂x = qx := Q(ηx) or q̂x 6= qx.
The latter case is referred to as a measurement error.

For simplicity, the exposition made use of analog processing,
but the operations can be implemented in digital as well. The fil-
ters gx(t) can then be implemented using pseudo-random sequences
with different random number seeds, so that multiple observations
with different measurement vectors φx are reported.

3. CARTOGRAPHY LEARNING
The cartography problem can now be posed as estimating the spa-
tial vector field l : R2 → RM based on the knowledge of the set
of sensor locations X = {x1, . . . ,xN}, the measurement vectors
{φx1 , . . . ,φxN }, and the quantized observations {q̂x1 , . . . , q̂xN }.
Note that this notation also accommodates the case where a sensor
reports multiple measurements to the FC. In that case, the location of
that sensor will be contained in X as many times as measurements it
obtains. Throughout, the symbol l will represent the function itself,
whereas l(x) ∈ RM will refer to the result of evaluating l at point x.

3.1. Nonparametric regression formulation

Let us first consider the case where no measurement errors have
occurred. The presence of measurement errors will be addressed
shortly. Upon receiving a measurement q̂x = qx, the FC learns that

2εqx ≤ φTx l(x) < 2ε(qx + 1). (6)

A sensible approach to construct the desired PSD map is to search
for a smooth function l, which is in a certain space of functions S
and consistent with (6) for all x ∈ X . We assume that this space
S is a reproducing kernel Hilbert space (RKHS) of vector-valued
functions [25, 26]. This choice allows us to capture the smoothness
of the function through the norm induced by the inner product. More
specifically, the problem can be cast as

minimize
l∈S

||l||

s.t. 2εqx ≤ φTx l(x) ≤ 2ε(qx + 1), ∀x ∈ X ,
(7)

which can be rewritten as

minimize
l∈S

||l||

s.t. |yx − φTx l(x)| ≤ ε, ∀x ∈ X
(8)
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for yx := (2qx + 1)ε.
In the presence of a measurement error at x, the true l will not

satisfy the constraint |yx − φTx l(x)| ≤ ε. Therefore, one must cap-
italize on the prior information on l, rather than blindly trusting the
data. Disciplined approaches to balance this trade-off are complex-
ity control techniques in statistical learning. An example of those
is the regularization framework, where an empirical loss augmented
by a penalty term is minimized [20, 27]. Based on this approach, a
smoothness enforcing term ‖l‖2 is added to the empirical risk.

To choose a proper empirical loss function that can cope with
measurement errors, it is noted that penalizing outliers in propor-
tion to the deviation from the feasible set is widely appreciated in
machine learning, as this yields fewer outliers. Thus, a suitable em-
pirical loss function is the ε-insensitive loss, defined as [20, 21]:

uε(y) = max(0, |y| − ε). (9)

The loss function can be regarded as a convex surrogate of the num-
ber of measurement errors, the same way as the `1-norm-based reg-
ularizers are often used as a surrogate for `0-norm-based ones in
sparse regression [20, Sec. 9.3]. Thus, our formulation is recast as

minimize
l∈S

1

N

∑
x∈X

uε(yx − φTx l(x)) + λ||l||2, (10)

where λ > 0 is a parameter adjusted to attain the desired trade-off
between empirical risk minimization and function smoothness.

3.2. Finite-dimensional parameterizaton

Solving (10) requires searching over a possibly infinite-dimensional
space S. Instrumental in this situation is a representer theorem,
which establishes a finite-dimensional parameterization of the search
space, converting (10) into a finite-dimensional optimization prob-
lem. Here, a representer theorem for vector-valued function spaces
must be invoked [25, 26].

Let S be a RKHS of functions from R2 to RM with an inner
product 〈·, ·〉 [28]. For any l ∈ S,φT l(x) can be represented as [25]

φT l(x) = 〈l, kxφ〉 (11)

where kx : RM → S is a linear operator associated with x ∈ R2. If
S := ×Mm=1S̄m, where × represents the Cartesian product and S̄m
a RKHS of functions from R2 to R, containing l(m), the linearity of
kx implies that it can be regarded as a matrix

kx =


k
(1,1)
x . . . k

(1,M)
x

...
. . .

...
k
(M,1)
x . . . k

(M,M)
x

 (12)

where k(m,m
′)

x ∈ S̄m ∀m are set to capture the prior knowledge
on the wireless propagation laws in our context. The reproducing
kernel K is the result of evaluating kx, seen as a function on R2,
at a point z ∈ R2, that is, K(z,x) := kx(z) ∈ RM×M . Due
to the properties of the RKHS, we have K(z,x) = K(x,z)T and
K(x,x) is a positive semi-definite matrix. Moreover, K satisfies

φT1K(z,x)φ2 = φT1 (kxφ2)(z) = 〈kxφ2, kzφ1〉 (13)

which follows from (11) by noting that kxφ2 is itself an element of
S. By virtue of the representer theorem [25, Theorem 5], for λ > 0,
the solution to (10) can be written as

l =
∑
x∈X

kxcx (14)

for some vectors {cx ∈ RM}x∈X .
Now, (10) can be written in terms of {cx ∈ RM}x∈X . To see

this, first note that

φT l(x) =
∑
x′∈X

〈kx′cx′ , kxφ〉 =
∑
x′∈X

φTK(x,x′)cx′ (15)

due to the linearity of inner products and (13). Note also that

||l||2 = 〈l, l〉 =
∑

x,x′∈X

〈kxcx, kx′cx′〉 =
∑

x,x′∈X

cTx′K(x′,x)cx.

(16)

Define the matrixK ∈ RMN×MN as

K :=

N∑
i,j=1

(eie
T
j )⊗K(xi,xj) (17)

and the vector c :=
∑N
i=1 ei ⊗ cxi ∈ RMN , where ⊗ represents

the Kronecker product. Then, one can write ||l||2 = cTKc and
φTxi

l(xi) = φ̌Txi
Kc, where φ̌xi := ei ⊗ φxi . Substituting these

into (10) yields

minimize
c∈RMN

1

N

N∑
i=1

uε(yxi − φ̌
T
xi
Kc) + λcTKc. (18)

3.3. SVM-based solution

SinceK is positive semi-definite [25, eq. (2.5)], problem (18) is con-
vex, and can in fact be formulated as a quadratic program. How-
ever, careful inspection reveals that it is also reduced to a standard
SVM problem without a bias term through the change of variables
c̃ = K

1
2 c, where K

1
2 represents a symmetric square root of K.

Therefore, it is known that it can be efficiently solved in the dual
domain. For example, sequential minimal optimization (SMO) can
be applied for efficient solution [29], although in the present case,
further simplification can be effected due to the lack of the bias
term [30]. For moderate problem sizes, say, MN < 5000, the inte-
rior point method is often used due to its reliability [27, Ch. 10].

Noting that uε(z) = max(0, z−ε)+max(0,−z−ε) for ε ≥ 0,
and introducing the slack variables ξx, ξ∗x, (18) can be rewritten as

minimize
c∈RMN ,ξx,ξ∗x

∑
x∈X

[ξx + ξ∗x] + λNcTKc

s.t. ξx ≥ yx − φ̌TxKc− ε

ξ∗x ≥ −yx + φ̌TxKc− ε
ξx, ξ

∗
x ≥ 0.

(19)

The Lagrangian dual of (19) is given by

minimize
α,α∗

1

4Nλ
(α−α∗)T (IN �Φ)TK(IN �Φ)(α−α∗)

− (y − ε1N )Tα+ (y + ε1N )Tα∗ (20)
s.t. 0N ≤ α ≤ 1N ,

0N ≤ α∗ ≤ 1N

where y := [yx1 , . . . , yxN ]T , Φ := [φx1 , . . . ,φxN ] and � is the
Khatri-Rao product defined as the column-wise application of the
Kronecker product. Finally, c can be recovered as

c =
1

2λN
(IN �Φ)(α−α∗). (21)
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Fig. 1. Comparison of the true and estimated maps for 40 sensors, 6 measurements per sensor, 8 bits per measurement and λ = 10−5.
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Fig. 2. Mean square error of the estimate with respect to the true
map. Error bars show two standard deviations of the Monte Carlo
estimate.

4. SIMULATIONS

The operation of the proposed technique is illustrated with simple
numerical examples. Consider the case of M = 4, corresponding to
3 interference sources with additive noise, which is constant across
the space. The deployment region is set to [0, 1]× [0, 1] ⊂ R2. The
true l postulated to model the attenuation is given by

l(m)
x =

δAm
δ + ||x− ym||γ

(22)

where δ = 10−3 is a small constant to ensure that the denominator
does not vanish and γ = 3 is the pathloss exponent. Parameters
AM and yM denote the transmit-powers and the source locations.
In the experiment, they were set as A1 = 0.9, A2 = 0.8, A3 = 0.7,
y1 = (0.2, 0.8), y2 = (0.4, 0.5) and y3 = (0.8, 0.9). The noise
power was set to l(M)

x = 0.75 for all x.
N sensors were deployed randomly over a 200 × 200 uniform

grid. The measurements were generated as q̂x = Q(|ηx + zx|) =
Q(|φTx l(x) + zx|), where zx ∼ N (0, 10−3 Var {yx}) is the mea-
surement noise. The vectors φx were randomly generated with
uniformly distributed components. A Gaussian diagonal kernel was
adopted, which is defined as

K(z,x)|i,i = exp

{
−||z − x||

2

σ2
i

}
, (23)

where σ2
m = 0.1 for m = 1, 2, 3 and σ2

4 is a very large constant.
Fig. 1 presents the true and the estimated fields l(x), where the

crosses denote the sensor locations. Each sensor transmits 6 mea-
surements, each produced with a different φx and quantized to 8
bits. In total, a sensor transmits only 48 bits. Yet, it is observed that
the constructed PSD maps match well with the true ones for all three
sources as well as the background noise.

To see the performance depending on the number of quantization
levels, Fig. 2 depicts the reconstruction mean square error (MSE)
obtained by Monte Carlo simulations. To capture only the quanti-
zation effects, no measurement errors were considered. Each sen-
sor reports 8 measurements to the FC. Two observations are made.
First, the MSE does not go to zero even when the number of bits
per measurement increases. This is reasonable considering the lim-
ited number of sensors. Figuratively speaking, the situation is like
trying to reconstruct a band-limited signal with samples taken below
the Nyquist rate. Secondly, the MSE becomes flat after certain num-
ber of bits, offering optimal quantization levels at around 4 bits per
measurement.

5. CONCLUSIONS

A novel cartography scheme has been introduced to estimate PSD
maps across frequency and space by relying on a small number of
bits reported by a set of inexpensive sensors. A nonparametric re-
gression problem for vector-valued functions was formulated, which
was seen to be equivalent to SVM formulations. Future research
directions include exploring full implications of this as well as ob-
taining online algorithms capable of tracking time variations.

3255



6. REFERENCES

[1] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum
access,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89,
2007.

[2] A. Alaya-Feki, S. B. Jemaa, B. Sayrac, P. Houze, and
E. Moulines, “Informed spectrum usage in cognitive radio
networks: Interference cartography,” in Int. Symp. Personal,
Indoor, Mobile Radio Commun., 2008, pp. 1–5.

[3] B. A. Jayawickrama, E. Dutkiewicz, I. Oppermann, G. Fang,
and J. Ding, “Improved performance of spectrum cartography
based on compressive sensing in cognitive radio networks,” in
Int. Conf. Commun., Jun. 2013, pp. 5657–5661.

[4] D.-H. Huang, S.-H. Wu, W.-R. Wu, and P.-H. Wang, “Cooper-
ative radio source positioning and power map reconstruction:
A sparse Bayesian learning approach,” IEEE Trans. Veh. Tech-
nol., 2014, to appear.

[5] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum
sensing for cognitive radio networks by exploiting sparsity,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1847–1862,
Mar. 2010.

[6] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Group-lasso
on splines for spectrum cartography,” IEEE Trans. Signal Pro-
cess., vol. 59, no. 10, pp. 4648–4663, Oct 2011.

[7] S.-J. Kim, N. Jain, G. Giannakis, and P. Forero, “Joint link
learning and cognitive radio sensing,” in 45th Asilomar Conf.
Signals, Syst., Comput., Pacific Grove, CA, Nov. 2011.

[8] S.-J. Kim and G. B. Giannakis, “Cognitive radio spectrum pre-
diction using dictionary learning,” in IEEE Global Commun.
Conf., Atlanta, GA, Dec. 2013.

[9] S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Cooperative
spectrum sensing for cognitive radios using kriged kalman fil-
tering,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp.
24–36, Feb 2011.

[10] E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Channel gain
map tracking via distributed kriging,” IEEE Trans. Veh. Tech-
nol., vol. 60, no. 3, pp. 1205–1211, 2011.

[11] E. Axell, G. Leus, and E. G. Larsson, “Overview of spectrum
sensing for cognitive radio,” in Int. Workshop Cognitive In-
form. Process., 2010, pp. 322–327.

[12] K. Nishimori, R. Di Taranto, H. Yomo, P. Popovski, Y. Taka-
tori, R. Prasad, and S. Kubota, “Spatial opportunity for cogni-
tive radio systems with heterogeneous path loss conditions,” in
65th IEEE Veh. Technol. Conf., Apr. 2007, pp. 2631–2635.

[13] Z. Quan, S. Cui, H. Poor, and A. Sayed, “Collaborative wide-
band sensing for cognitive radios,” IEEE Signal Process. Mag.,
vol. 25, no. 6, pp. 60–73, 2008.

[14] D. D. Ariananda, D. Romero, and G. Leus, “Cooperative com-
pressive power spectrum estimation,” in IEEE Sensor Array
Multichannel Signal Process. Workshop, A Corunha, Spain,
Jun. 2014.

[15] O. Mehanna and N. Sidiropoulos, “Frugal sensing: Wideband
power spectrum sensing from few bits,” IEEE Trans. Signal
Process., vol. 61, no. 10, pp. 2693–2703, May 2013.

[16] O. Mehanna, “Frugal sensing and estimation over wireless net-
works,” PhD thesis, University of Minnesota, MN, 2014.

[17] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and
R. G. Baraniuk, “Beyond nyquist: Efficient sampling of sparse
bandlimited signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1,
pp. 520–544, Jan. 2010.

[18] S. Becker, Practical compressed sensing: modern data acqui-
sition and signal processing, Ph.D. thesis, California Institute
of Technology, 2011.

[19] “IEEE 802.22 standard: Cognitive wireless RAN medium ac-
cess control (MAC) and physical layer (PHY) specifications:
policies and procedures for operation in the TV bands,” Jul.
2011.

[20] V. Cherkassky and F. M. Mulier, Learning from data: concepts,
theory, and methods, John Wiley & Sons, 2007.

[21] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[22] D. Romero and G. Leus, “Wideband spectrum sensing from
compressed measurements using spectral prior information,”
IEEE Trans. Signal Process., vol. 61, no. 24, pp. 6232–6246,
2013.
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