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ABSTRACT

This paper analyses the von Mises approximation for the

distribution of the phase angle between two independent

complex Gaussian vectors. By upper bounding the Kullback-

Leibler divergence, it is shown that when their circular means

and variances coincide, the distribution converges to a von

Mises distribution both in the low and high signal-to-noise

ratio regimes.

Index Terms— von Mises, Tikhonov, Kullback-Leibler, dif-

ferential phase shift keying.

1. INTRODUCTION

The distribution of the phase angle between two complex

Gaussian vectors is of particular importance in communica-

tion systems that employ differential modulation schemes [1].

The distribution has been derived under various assumptions

by a number of researchers. One of the earliest works is that

of Tsvetnov [2], who derived the distribution for the case

when both vectors have the same signal-to-noise ratio (SNR).

Tsvetnov later extended this result to when they have different

SNRs [3]. Fleck and Trabka [4] also derive the equal-SNR

case distribution for analysis of the uncoded symbol error

probability (SEP) of differential phase shift keying (DPSK).

Pawula et al. [5] derived the distribution for both equal and

non-equal SNR cases as well as when the Gaussian vectors

are correlated. Later, Pawula [6] restates these results such

that the integrand contains only exponential functions. In all

of the aforementioned works, the probability density func-

tion (PDF) and cumulative density function (CDF) are only

expressible in an integral form.

The von Mises (also known as the Tikhonov) distribution is

well known for its use in directional statistics [7]. In [8],

Shmaliy proposed using the von Mises distribution to approx-

imate the distribution of the phase angle of a single complex

Gaussian random variable. To find the best fit in a least mean

squared error (LMSE) sense, Shmaliy proposed modelling

the concentration parameter of a von Mises distribution as a

function of the SNR. The distribution of the angle between

two Gaussian vectors is then approximated by that of the dif-

ference of two independent von Mises random variables with

parameters optimised to minimise the LMSE.

In this paper, the validity of the von Mises PDF approxima-

tion for the phase of a complex Gaussian vector is analysed

using the Kullback-Leibler (KL) divergence (or relative en-

tropy) [9]. The KL divergence is a non-symmetric, informa-

tion theoretic measure of the difference between two PDFs

of the same support. An upper bound on the KL divergence

between the PDF of the phase of a complex Gaussian vector

and a von Mises PDF is derived. Asymptotically in the high

SNR regime, when their circular means and variances coin-

cide, it is shown that the upper bound is inversely proportional

to the SNR. In the low SNR regime, the upper bound is pro-

portional to the square root of the SNR. These results show

that, asymptotically in both the high and low SNR regimes,

the actual PDF converges to a von Mises PDF with the same

circular mean and variance.

Whilst the PDF of the (wrapped) sum of two independent von

Mises distributed random variables is known in closed form,

it can also be approximated by a von Mises PDF [7]. To in-

vestigate this further, an upper bound on their KL divergence

is derived. When their circular mean and variances coincide,

and their concentration parameters increase, the upper bound

is shown asymptotically to be proportional to the sum of their

reciprocal concentration parameters. Similarly, as their con-

centration parameters decrease the upper bound is shown to

be proportional to the square of the product of their concentra-

tion parameters. Thus, asymptotically in these two regimes,

the PDF of the sum of two independent von Mises random

variables converges to a von Mises PDF with the same cir-

cular mean and variance. This implies the PDF of the phase

difference between two independent Gaussian random vec-

tors also converges to a von Mises PDF.

2. PRELIMINARIES

Let X ∼ CN
(√
γeθ, 1

)

denote a complex circularly sym-

metric random variable with mean
√
γeθ and unit variance,
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where γ denotes the SNR. Furthermore, let P = |X| and Φ =
arctan(ℑ{X},ℜ{X}) denote the magnitude and phase of

X , where arctan(b, a) is the two argument arctangent func-

tion. The joint and marginal PDFs were derived by Ben-

nett [10],

fP,Φ(ρ, φ; γ, θ) =
ρ

π
e−(ρ2+γ−2

√
γρ cos(φ−θ)) (1)

fP (ρ; γ) = 2ρe−(ρ2+γ)I0 (2
√
γρ) (2)

fΦ(φ; γ, θ) =
e−γ

2π
+

1

2

√

γ

π
cos(φ− θ)e−γ sin2(φ−θ)

× [1 + erf (
√
γ cos(φ− θ))] , (3)

where Iν(z) denotes the modified Bessel function of the first

kind [11, p.374], and erf(z) denotes the error function [11,

p.228].

Let V ∼ VM(θ, κ) denote a von Mises distributed random

variable with mean θ and concentration κ. Its PDF, circular

variance, and entropy are given by [7],

fV (φ; θ, κ) =
eκ cos(φ−θ)

2πI0(κ)
(4)

ςV (κ) = 1 − E [cos(V )] = 1 − I1(κ)

I0(κ)
(5)

hV (κ) = log(2πI0(κ)) − κ (1 − ςV (κ)) , (6)

respectively. In [12], Shmaliy showed that, conditioned on P ,

the distribution of Φ is a von Mises distribution, i.e.

fΦ|P (φ|ρ; γ, θ) = fV (φ; θ, 2
√
γρ) . (7)

Thus (7) heuristically implies that as the SNR increases,

the density of P becomes more concentrated about its mean

value, and therefore fΦ will approach a von Mises density. On

the other hand, as SNR decreases, the density of P becomes

dispersed from its mean, and fΦ will approach a uniform

density, also a special case of the von Mises density.

Now let Φ1 and Φ2 be two independent random variables

with densities fΦ(φ; γ1, θ1) and fΦ(φ; γ2, θ2) respectively as

given in (3). Furthermore, let Ψ = (Φ2 − Φ1)2π denote the

wrapped difference of Φ2 and Φ1. The PDF of Ψ is given

by [2–6]

fΨ(ψ; γ1, γ2,∆θ) =
1

4π

∫ π/2

−π/2
e−S(t,ψ−∆θ)

× [1 + 2Υ − S(t, ψ − ∆θ)] cos t dt, (8)

where ∆θ = (θ2 − θ1)2π is the phase difference, S(t, ψ) =
Υ − Λ sin t − Ω cosψ cos t, Υ = γ2+γ1

2 , Λ = γ2−γ1
2 , and

Ω =
√
γ1γ2. Similar to (7), it is not difficult to show

that [13]

fΨ|P1,P2
(ψ|ρ1, ρ2; γ1, γ2,∆θ) =

fW (ψ;∆θ, 2
√
γ1ρ1, 2

√
γ2ρ2) (9)

where [7, p.44],

fW (w;∆θ, κ1, κ2) =
1

2πI0(κ1)I0(κ2)

× I0

(

√

κ2
1 + κ2

2 + 2κ1κ2 cos(w − ∆θ)

)

, (10)

is the PDF of the sum of two indepenent von Mises distributed

random variables. In [8] Shmaliy proposes approximating (8)

by (10) using heuristically chosen functions for κ1 and κ2 that

are then optimised to minimise the LMSE.

3. THE VON MISES APPROXIMATION OF FΦ

The conditional PDF (7) highlights an important connection

between the von Mises distribution and fΦ. This result sug-

gests that there is some further underlying analytical reason-

ing for approximating fΦ by a von Mises density, which is

a much simpler and convenient density to work with. The

natural question that arises is: how “good” does this approx-

imation match the true density? To answer this question, the

KL divergence is used as a measure of how well the approxi-

mation matches the true density. The KL divergence between

the PDFs of two random variables X and Y , both defined on

the same support S is [9]

DKL(X ‖ Y ) , Hcross(X,Y ) −H(X), (11)

whereHcross(X,Y ) , −
∫

S fX(x) log fY (x) dx andH(X) ,

−
∫

S fX(x) log fX(x) dx are the cross entropy between X
and Y , and the entropy of X respectively. Given the dis-

tribution of Φ in (3), a closed form expression for its KL

divergence from the von Mises density in (4) is intractable.

Instead, one must resort to bounding approaches. Since the

KL divergence is an asymmetric measure, one may either

consider bounding DKL(Φ ‖ V ) or DKL(V ‖ Φ). It turns

out that bounding the former yields a much simpler approach

resulting in a closed form expression. To this end, consider

the following results.

Lemma 1. Let Φ and P denote two random variables with

joint PDF given by (1). Their joint entropy is given by

H(Φ, P ) = 1 + log(π) − 1
2 log(γ) − 1

2 E1(γ) (12)

where E1(z) denotes the exponential integral [11, p.228].

Proof. The proof follows via [14, Lemma 10.1] and [15,

eq. 2.15.5.4].

Lemma 2. Define Φ and P as in Lemma 1. The entropy of P
is upper bounded according to

H(P ) ≤1 + 2γ − log(2
√
γ) − 1

2 E1(γ) − log I0(2
√
γµP (γ))

(13)
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where

µP (γ) =

√
π

2
e−

γ

2 I0

(γ

2

)

+
√
γ (1 − ςΦ(γ)) , (14)

is the mean value of P , and

ςΦ(γ) = 1 − 1

2

√
πγe−

γ

2

[

I0

(γ

2

)

+ I1

(γ

2

)]

. (15)

is the circular variance of Φ.

Proof. The proof follows via the convexity of log I0(x) and

Jensen’s inequality [9] and application of [15, eq. 2.15.5.4].

Lemma 3. Define Φ and P as in Lemma 1. The entropy of Φ
is lower bounded according to

H(Φ) ≥ log(2πI0(2
√
γµP (γ))) − 2γ. (16)

Proof. The proof follows using the property that conditioning

reduces entropy [9], i.e. H(Φ) ≥ H(Φ|P ) = H(Φ, P ) −
H(P ), and Lemmas 1 and 2.

Lemma 4. Define Φ and P as in Lemma 1, and V ∼
VM(θ, κ). Then,

Hcross(Φ, P ) = log(2πI0(κ)) − κ (1 − ςΦ(γ)) . (17)

Proof. The proof follows via (6) and (7).

Theorem 1. Define P , Φ and V as given in Lemma 4. The

Kullback-Leibler divergence is upper bounded according to

DKL(Φ ‖ V ) ≤ Dub(γ;κ) , log I0(κ)

− log I0 [2
√
γµP (γ)] + 2γ − κ [1 − ςΦ(γ)] . (18)

Proof. The proof follows via (11), and Lemmas 3 and 4.

Since the von Mises density is the maximum entropy distribu-

tion under circular mean and variance constraints [7], the KL

divergence between any wrapped distribution and a von Mises

density is minimised when their circular means and variances

coincide, i.e. the solution to ςV (κ) = ςΦ(γ). This is also ev-

ident upon closer inspection of (17). To examine this further,

consider the following corollary.

Corollary 1. For large γ,

ςΦ(γ) − ςV (2γ) =
1

16γ2
+ O(γ−3), (19)

and for small γ,

ςΦ(γ)− ςV (
√
πγ) =

[

1

8π
− 1

16

]

(πγ)
3

2 +O((πγ)
5

2 ). (20)

Proof. These results follow via application of [11, eq. 9.6.10

and eq. 9.7.1], and [7, eq. 3.5.32 and eq. 3.5.34].

Thus, Corollary 1 implies that at low SNR, the optimal κ
value that minimises the KL divergence converges to

√
πγ,

whereas for high SNR it converges to 2γ. Moveover, asymp-

totically, at these optimal κ values, the upper bound behaves

as follows.

Corollary 2. For large γ,

Dub(γ; 2γ) =
1

4γ
+ O(γ−2). (21)

For small γ,

Dub(γ;
√
πγ) = (2 − π

2 )γ + O(γ2). (22)

Hence, the asymptotic results of Corollary 2 imply that: as

γ → ∞, the density of Φ approaches a von Mises density

with mean θ and concentration 2γ; and on the other hand, as

γ → 0, the density of Φ also approaches a von Mises density

with mean θ and concentration
√
πγ.

4. THE VON MISES APPROXIMATION OF FΨ

Whilst the sum of two independent von Mises distributed ran-

dom variables is known in closed form (see (10)) it has also

been shown empirically that it can be approximated by a von

Mises PDF [7]. Since the PDF of Φ can be approximated by

a von Mises PDF then it seems reasonable that fΨ can also be

approximated by a von Mises PDF. To investigate this further,

consider the following results.

Theorem 2. Let random variables V and W be distributed

according to (4) and (10) respectively. Their KL divergence

is upper bounded by

DKL(W ‖ V ) ≤ Dub,2(κ1, κ2;κ) , log(I0(κ))

− κ [1 − ςW (κ1, κ2)] − log(I0(κ1)I0(κ2))

+ log I0

[

√

κ2
1 + κ2

2 + 2κ1κ2(1 − ςW (κ1, κ2))

]

,

(23)

where

ςW (κ1, κ2) = ςV (κ1) + ςV (κ2) − ςV (κ1)ςV (κ2) (24)

is the circular variance of W .

Proof. Following the same steps as the proof of Lemma 4,

Hcross(W,V ) = log(2πI0(κ)) − κ [1 − ςW (κ1, κ2)] . (25)

Since log(I0(
√
x)) is a concave function, then using Jensen’s

inequality,

H(W ) ≥ log (2πI0(κ1)I0(κ2))

− log I0

(

√

κ2
1 + κ2

2 + 2κ1κ2(1 − ςW (κ1, κ2))

)

. (26)

Subtracting (26) from (25) results in (23) as stated in the the-

orem.
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Fig. 1. Uncoded SEP (left) and the achievable rate for M -ary DPSK (right). Solid lines show true values, circles show

computation using approximation (31).

As in the case for the PDF of Φ, since the von Mises distribu-

tion is the maximum entropy distribution, the KL divergence

is minimised when ςV (κ) = ςW (κ1, κ2), which is also clear

by inspection of (25).

Corollary 3. Let W be distributed according to (10) with

κ1 = ακ2, 0 < α ≤ 1, i.e. κ1 ≤ κ2. For large κ1,

ςV ( κ1

1+α ) − ςW (κ1,
κ1

α ) =
α

2κ2
1

+ O(κ−3
1 ). (27)

For small κ1,

ςV (
κ2

1

2α ) − ςW (κ1,
κ1

α ) = −
(

1 − α2

48α3

)

κ4
1 + O(κ6

1). (28)

In other words, Corollary 3 implies that as κ1 and κ2 grow

large (with a fixed ratio α), the circular variance of W ap-

proaches that of a von Mises density with concentration

κ1κ2/(κ1 + κ2). On the other hand as κ1 and κ2 become

small, the circular variance of W approaches that of a von

Mises density with concentration κ1κ2/2.

Corollary 4. Define W as in Corollary 3. Then for large κ1

Dub,2

(

κ1,
κ1

α ; κ1

α+1

)

=
α

4(α+ 1)κ1
+ O(κ−2

1 ). (29)

For small κ1

Dub,2

(

κ1,
κ1

α ;
κ2

1

2α

)

=
κ4

1

32α2
+ O(κ6

1) (30)

Corollary 4 implies a certain asymmetry between the asymp-

totic large and small κ1 regimes. In particular, as κ1 → 0 the

bound is proportional to κ4
1, whereas as κ1 → ∞ the bound

is proportional to κ−1
1 . This asymmetry was also observed in

the actual KL divergence, albeit with even larger exponents

than what the upper bound suggests.

Corollary 4 proves that in the asymptotic large and small limit

of κ1 and κ2, the PDF ofW converges to a von Mises density.

Moreover, since in the previous section it was established that

the PDF of Φ converges to a von Mises density, then one may

also conclude that the PDF of Ψ also converges to a von Mises

density. More precisely,

fΨ(ψ;∆θ, γ1, γ2) ≈ fV (ψ;∆θ, κ∗(γ1, γ2)), (31)

where κ∗(γ1, γ2) is the solution to

ςV (κ) = ςΨ(γ1, γ2) = ςΦ(γ1) + ςΦ(γ2) − ςΦ(γ1)ςΦ(γ2).
(32)

From Corollaries 1 and 3, as γ1, γ2 → ∞, then κ∗(γ1, γ2) →
2γ1γ2
γ1+γ2

, and as γ1, γ2 → 0, then κ∗(γ1, γ2) → π
2

√
γ1γ2.

Fig. 1 illustrates a simple application of (31), which shows the

uncoded SEP (left) and the capacity of M -ary DPSK (right)

using the method of Ungerboeck [16] assuming a phase-

difference receiver [17]. The solid lines show these quantities

using the actual PDF (8), and the circle markers show their

computation using approximation (31). As expected, it can

be seen that the approximation is virtually indistingishable

from the true value.

5. CONCLUSION

In this paper, using the KL divergence, it was shown that the

PDF of the phase angle of a Gaussian vector, and the PDF of

the phase angle between two independent Gaussian vectors

converges to a von Mises PDF in both the asymptotic high

and low SNR regimes. The latter case is of particular impor-

tance as it allows its PDF, not expressible in closed form, to be

approximated by the more convenient von Mises PDF.
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