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ABSTRACT This is prohibitive for the system and circuit designers of p
The traditional modulator in digital communication sysgem lar transmitters. They need to understand why and how does
is the quadrature (IQ) modulator using the Cartesian reprdhe bandwidth of the polar signals increase in order to desig
sentation of a complex baseband signal. In the last yeaes, tfihe modulator circuits properly.
polar transmitter has been becoming an attractive aliemnat ~ This paper gives a theoretical analysis of the spectral
due to its significantly increased enerdiigiency. It uses a growth of the polar representation of communication sig-
polar representation of the baseband signal before traasminals. The analysis is done by assuming a complex-Gaussian
sion. The result of the changed signal representation is-an i baseband signal and deriving its statistical propertigs (-
ternal spectral growth of the polar signals whose undegstan variance function, spectrum) in the polar domain from those
ing is fundamental for the design of modern polar transmitin the Cartesian domain.
ters. This papers gives a mathematical analysis of thergppect ~ The paper is organized as follows: Section 2 introduces
growth of the polar signals. the basic polar transmitter architecture. Section 3 dsesis
the exact model and a simplified Gaussian model of the base-
’band signal. Section 4 performs an analytic study of the-spec
tral growth of the polar signals under the simplified signal
model. The results are verified with simulations in section 5

Index Terms— signal representation, polar transmitter
polar signals, spectral growth

1. INTRODUCTION

Modern communication systems oftenffew from a large 2. POLAR TRANSMITTER AND POLAR SIGNALS

peak-to-average ratio (PAR). In a traditional Cartesiangr , , . .
mitter doing an upconversion of the inphase (1) and quadraE'g- 1 shows the basic architecture of a polar transmitter.

ture (Q) component of the complex baseband signal, th&he baseband processor generates a sequence ofdlsm_'rete-tl
power amplifier (PA) is requested to operate in a highly lineaCOMpIex symbolg, € C. The continuous-timpulse shaping
mode. Due to the large PAR value, a large power batkro filter g(t) € R converts the sequence of cqmplex symimls
the PA is necessary, resulting in a lower enerfiiciency. to an analog complex-valued baseband signal

Kahn proposed an envelope elimination and restoration o
technique in [1]. Instead of mixing,(@) by an 1Q-modulator, - _ = i — jo() —
the amplitude and phas@® of the complex baseband signal < n;m gt = Toym) = 1(8) + Ja(t) = r(te (Om)
are extracted from the 1Q-signal, processed separatety, an (2)
recombined at the PA. In this case, there is no need for where Tgyn, is the symbol period. The Fourier transform
highly linear PA. The PA rather operates in the switch mode5(w) = F(g(t)) of g(t) determines the spectrum and band-
with a significantly increased energffieiency and reduces width of s(t). Theinphase {t) = Re(s(t)) and quadrature
the power consumption of the transmitter. Today this concecomponenty(t) = Im(s(t)) represent the Cartesian coordi-
is known as polar transmitter [2]. Itis a promising trangerit nates ofs(t) and are called 1Q- oCartesian signals The
architecture to meet both the spectral and enefiigiency re-  polar signalsare
quirement. The amplitude phase), and constant-envelope

phase-modulated signelf are called polar transmitter signals _ _ [0 >
or simply polar signals. "0 IS0 0+ =0,

As a result of the changed signal representation inside the o) = arg®(t) € [-7,7), 2
modulator, a spectral growth has been observed: the polar mit) = st)/|st) = eV ec.

signalsr, # have a much wider spectrum than the correspond-

ing Cartesian signalsg. As a rule of thumb, a factor 10 r(t) is theamplitudeor enveloped(t) is thephasecomponent
of spectral growth for the phase and a factor of 2—4 for thef s(t). m(t) is the complex-valuedonstant-envelope phase-
amplitude is often cited from measurements and simulationsiodulated signaWwith [m(t)] = 1. The conversion from the
[3, 4, 5]. There are some heuristic explanations for the specCartesian domaini,(q) to the polar domainr(6) is typically
tral growth, but there have been no theoretical studies yetlone by a coordinate rotation digital computer (CORDIC)
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[9, 10]. The complex baseband signal can then be written

ass(t) = r(t)m(t). This multiplication corresponds to the re-
combination in the PA in a polar transmitter. The transrditte
RF signal is

Re(s(t)el“) = r(t) cosguct + 6(t)) ()
wherew; is the carrier frequency. Since thffext of the car-

rier wc is well known (shifts a spectrum from baseband to
passband), this paper studies the spectral growth of thee bas

band polar signalg(t), 6(t), m(t) only.
i()

Re@n) r(t)

a(t)

S(t)

Im(ay) a() 6(t) m(t)

baseband
processor
CORDIC

a(t)

0

Fig. 1. Baseband representation of a polar transmitter

3. SIGNAL MODEL

3.1. The pdf approach

In a Cartesian transmitter, the baseband sigrai + jg is a
linear function ofi, g. Hence the spectrum afis simply the
sum of the spectra ofq if i andq are uncorrelated:

Csdw) = Gji(w) + Cyq(w). 4
Often, Cji(w) = Cyq(w) and thusCsqw) = 2Cji(w). This

means, there is no filerence in the spectral shape between

the baseband signaland its Cartesian componeints.
This is not the case for the polar representatighm of
s because they arponlinear functions ofi,gq. Therefore,

Cartesian domain Polar domain

p(i1, 2, g1, 2; 1) <> p(ry,r2, 601, 02;1)
v v v v
Pis,izt)  p(ds,d2;t) p(ri.r2;t)  p(6a,62;1)
v v v v
Gii(t) Caq(t) Crr (1) Coa(t), Cmn(t)
v v v
Cii(w) Cqolw) <«X> Cy(w) Cop(w), Crm(w)

Fig. 2. The pdf approach to compute the spectra in the Carte-
sian and polar domain

baseband signat) in Eq. (1).a, € C is a sequence of i.i.d.
random variables with zero mean and variande The pdf
of a, depends on the constellation diagram of the modulation
and on the optional IFFT in OFDM systems. In general, the
exactpdf of the continuous-time baseband sigs@) is un-
known and dificult to determine. But it is easy to show that

¢ 5(t) has zero mean and the covariance function

=)

Codt+7,7) =03 > ot + T = NTeymd(r — NTeym) (5)

n=—co

wheret is the time lag ana the absolute time instant.

e 5(t) is notstationary becausge |t + 7, r) depends both on
the time lagt and the absolute time instantTo be more
precise s(t) is cyclostationanf11, 12] andcsdt + 7, 7) is
periodic int with the periodTsym. In theory,s(t) has no
spectrum as its spectral power distribution changes in

the 2nd order moments (covariance function and spectrum)

of r,6,m do not only depend on the 2nd order moments of

i, q, but rather on their probability density function (pdf). If
only the spectra of, g are known but not their distribution,
the spectra of, 6, m cannot be determined. This is also true
in the opposite direction.

In order to predict the spectral growth of the polar
signals, one has to follow the pdf approach in Fig.
Consider two baseband samplgs = S(tx) = ik + jqk =
reel® = rime, k = 1,2 at the time instantg,, t, with the
time lagt ty — to. The starting point of the analysis
is the joint pdf p(i1,iz, qi,0p;t) of the Cartesian compo-
nentsiiy, i, 01,g2. From that, one can calculate the joint
pdf p(ry, 12,61, 62;t) of the polar componentsy,rs, 01, 62
and then their bivariate pgf(ry, r2; t), p(61, 62; t), covariance
functionsc (t), Cae(t), Cmn(t), and finally the corresponding
spectraCy; (w), Coy(w), Cmm{w). There is no shortcut be-
tween the Cartesian spectfa(w), Cqq(w) and polar spectra
Crr (w)9 CF)H(w)’ Cmm(w)

3.2. The exact signal model

To determine the joint pdb(ri, r2, 61, 62; t), one needs to con-
sider the signal model fos(t). Recall theexact modebf the
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2.

periodically.
¢ In [11], theaverage covariance function
Tsym 0_2 00
Cedt) = f Cst+7, T)dr = 2 f g(t+7)g(r)dr
Tsym 0 Tsym —co

(6)

and theaverage covariance spectrum

2

Cadw) = F(Eudlt) = —IG(w)P )

sym
are proposed to describe the average correlation and
spectral properties of a cyclostationary signal. Clearly,
the pulse shaping filteg(t) determines the spectrum and
bandwidth ofs(t).
In general, the real and imaginary partafare depen-
dent (e.g. in a phase modulation wita| = 1), but they
are uncorrelated due to rotation-symmetric constellation
pointsa,. Sincea, anda, are independertm # n, i(t1)
andq(t,) are also uncorrelated;, t,.

3.3. A simplified signal model

Unfortunately, the above exact signal model is not suitable
for an analytic study of the polar signals because there is
no analytic expression for the joint pdf sft). Below three



model approximations are made leading ®raplified Gaus- B 2 S (@n-Dy? 1,

sian modefor g(t) which allows an analytical study aft) in T 44-n) Z ( (2n)!! ) (n+ 1)2,0 (10)

the polar domain: n=0 ) ,

Al) In the non-OFDM case, each valuesgf) is a superposi- B np? 14 1, (1-3y1, N
tion of several independent symbalsbecause the pulse T 4(4-n) 2 22'0 2.4 32p e
shaping filterg(t) has typically a length of several symbol
periods. In the OFDM case, eaeRis the output of an is the correlation caéicient betweerr; andr,. K(o?)

IFFT, i.e. a linear combination of an even larger number  andg(?) are the complete elliptic integral of 1st and 2nd
of independent symbols. According to the central limit kind, and (h—1)!! =1-3-...-(2n-1) and ()!! =

theorem [12]5(t) is approximately Gaussian distributed  2.4. ... (2n) denote double factorials, respectively.
with zero mean. _ P2) Similarly, the covariance function betwempn = el’* and
A2) In the exact signal modsei(t;) andq(ty) are uncorrelated. M, = €% is cnft) = 02 m(o(t)) with o2, = 1 and
Sinces(t) is Gaussian in the simplified modé(t;) and
q(ty) are also independent with identical variances. This E(?) — (1 - pAK(0?)
meanss(t) is circular complex Gaussian. pmlp) = 5 (11)
A3) s(t) is assumed to be stationary with the covariance func- - 2
o2 [ 7o @n-1)1 1 5,
tion csft) = —2 f g(t + 7)g(r)dr and the spectrum - 4 Z T@en ) n+1 1P (12)
Tsym —c0 n=0 h
o2 2 2
Csdw) = —2-IG(w)I* as in Eq. (6) and (7). _ 1o (L-8)y1.
Tsym 4 1+ > 2P+ W 3p +...

According to these assumptiorsft) can be approximated by

a stationary, zero-mean, and circular complex Gaussi@abig p3) The covariance function betwe@randé, was unknown
whose statistical properties are completely describechby t 414 is derived for the first time in this paper in a similar

2nd order moment of(t), i.e. its spectrum. Due to this distri- . . 5 5 2
bution assumption, it is now possible to compute the spectra &Y 35" [8]. 1tiscan () = orpn(p(D)) With oy = 5 and
of the polar signals(t), 6(t), m(t) from those of the Cartesian 3 1 1 5

signalsi(t), q(t) by using the pdf approach in Fig. 2. Section o) = =— (1 +—p+ PPt —p +.. ) (13)
5 shows later how sensitive are the results with respecigo th 2n 2 6 24

model approximation. Computing the Fourier transform of the above covari-

ance functions results in the spectrum of the polar signals

4. SPECTRAL GROWTH IN THE POLAR DOMAIN r(t), mt), 6(t):
Letsc = S(t) = ik + jok = ke = rym, k = 1,2 be two Cr(w) = o?F (or(p(1).
random samples dft) at any two instants;, t. According _ 2 t 14
to the simplified circular complex Gaussian model, the real Crnnl) O-g’rf(pm(p( ), (14)
random vectorif, i, g1, g] " is N(0, C) distributed with the Coo(w) = 57 (pelp(1))
covariance matrix wherep(t) = Gi(t)/0? = FXCi(w))/o? is determined by
o> poe? 0 0 the spectrunC;(w) in the Cartesian domain. By using the
Co po? o? 0 0 8 power series ob; (o), pm(p), pe(p) in Eq. (10), (12), (13) and
1 0 0 o? po? | ®) the fact that a multiplication in the time domain correspond
0 0 po? o2 to a convolution in the frequency domain, the spectra in the

polar domain become
o2 is the identical variance dft), q(t) andp = p(t) is the
normalized correlation cdiécient between(ty), i(t2) as well
as q(t1), q(t2) with the time lagt = t; — t,, respectively.
Note that the functiop(t) is determined by the spectrum of
i(t), q(t). Starting with the pdf(iy, i, g1, g2), one can calcu- Crim(w)
late the pdf and covariance function of the polar components
[r1.r2,601,62]".
This has been partly done in [6, 7, 8]. Below the covari-
ance functions of(t), 6(t), m(t) are summarized:
P1) The covariance function betweepandr; is ¢, (t) = T'(w) = F(o(t)) = Ci(w)/c? is the normalized spectrum in
o?pr(p(t)) whereo? = (2 - %)o? is the variance of and  the Cartesian domain and the notatitufw) = F(o(t)) =
INi-1(w) * I'(w) denotes thek(— 1)-times self-convolution of
_ 2E(p?) - (1-p?)K(p?) - 5 I['(w). Actually, it is this self-convolution of (w) which leads
prlp) = -1 ©) to the spectrum growth in the polar domain.

Cir(w)

gcrz (rz(w) + 1—16r4(w) +. )

% (r(w) + %Fgg(w) +.. ) (15)

Coo() %(F((u) 4 %rz(w) + %rg(w) b )
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One interesting question is: If bottft) andm(t) have a pdf

spectrum [dB]
wider spectrum, why does the baseband sig(tak= r(t)m(t) 0

have a narrow, the originally given spectrum?(t) andm(t) 002 3 o0
were independent, the covariance functions(tj would be k=t 0.01 &
the product of the covariance functionssg) andm(t). Then ' -40
the spectrum of(t) being the convolution of their spectra 94 2 0 2 4 0 2 4
would be even wider. This is fortunately not the caser@p i
andm(t) are highly dependent [8], the spectrumrdf)m(t) 0
is not simply the convolution of the spectrarngf) andm(t). 0.02 3
In other words, the polar representation of the baseband sics = 20
nal implies only aninternal spectral growth inside the polar 01 40 -
modulator and does not change the spectrum of the transmi 00 5 4 o 5 2
ted RF signal in Eq. (3). r
Fig. 3 a) shows the normalized spectr&(tf r(t), 6(t), m(t) 0
for a Gaussian pulse shaping filggt) with the time-bandwidth- 0.2 _ .
productBTsym = 0.3. As expected, the polar signals have a % : % 20 =
much wider spectrum thd(t). The reason that the phase sig- 0.1 © _40
nalse(t) andm(t) = el’® show a stronger spectral growth than 0
the amplituder(t) is that the higher-order self-convolutions -1 6(/)1'[ ! 0 2 4
in Cg(w), Cmm(w) in Eq. (15) decay much slower to zero
than inC (w). Fig. 3 b) demonstrates the same behavior for 3 0 1\\%%
a root-raised-cosine (RRC) pulse shaping fiié) with the < % -20
roll-off factor@ = 0.5. Cji(w) is perfectly bandlimited in this = 0.0 L_J O a0
case, but the spectra of the polar signals are not banddimite ol - 1 5 > .
_ _ b) c=cos(0) (/2% Tsym
g 3 0 Fig. 4. Comparison between theory (- -) and simulation (—)
g g -10 % 9 for LTE downlink
g g -20 . m
2 2 39 ! ; In another EDGE simulation, a sequence of random 8PSK
N N symbols is filtered by a Gaussian-like pulse shaping filter.
TEB TEU —40 Since the EDGE pulse shaping filter is pretty short (roughly 5
S S -50 symbols) in comparison to the IFFT length in LTE, the filter
= . = 0 2 4 outputs(t) in EDGE is much less Gaussian. Though the Gaus-
2T, ., @2 T, sian assumption is remarkably violated in this case, theeagr
Fig. 3. Normalized spectra in the Cartesian and polar domaifent in the spectra of polar signals between the theory and
for a) Gaussian b) RRC pulse shaping filter simulation is still satisfactory (no plot due to limited spj.

6. CONCLUSION

5 SIMULATIONS The choice of the internal representation of a communinatio

One limitation of the above theoretical study is the use ef th Signal inside the modulator has a great impact to its spectra
simplified signal model in section 3.3. In realisff) is not ~ Properties. This paper gives an analytic study of the spectr
perfectly Gaussian. The question is thus: How good are th@0Wth in polar transmitters. By assuming a simplified Gaus-
theoretical results for the practice? sian S|g_nal model, the'spectral growth of the po'lar S|gna_mis c
Fig. 4 compares the theoretical results from the previou§€ Predicted for any given spectrum of the 1Q signal. Simula-
section with those calculated from simulated data based ofPnS Show that the theoretical results agree well with firac
the exact signal model in section 3.2. It shows the'atfd ~ €VeN if the Gaussian assumption is sometimes wolqted.
normalized spectrum aft), r(t), (t), m(t) for LTE downlink The_ choice of the_ S|g_nal representation ha§ also impact on
(16-QAM. 2048-point IFFT, equal power in all OFDM car- Other signal processing issues in communication systears. F
riers). Due to the large IFFT lengthit) is almost perfectly examp.le, the fect of a linear flltenng or q.uantlza.tlgn of the
Gaussian. The result is a perfect match in both the pdf anBCar Signals to the spectrum of |Q signal is nontrivial aad h
spectrum between the theory and simulation. This is also th@lSO 0 be investigated.
case when the OFDM carriers havéfdient powers.

1Sincem = ei? is complex, only the pdf of casis shown.
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