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ABSTRACT
The traditional modulator in digital communication systems
is the quadrature (IQ) modulator using the Cartesian repre-
sentation of a complex baseband signal. In the last years, the
polar transmitter has been becoming an attractive alternative
due to its significantly increased energy efficiency. It uses a
polar representation of the baseband signal before transmis-
sion. The result of the changed signal representation is an in-
ternal spectral growth of the polar signals whose understand-
ing is fundamental for the design of modern polar transmit-
ters. This papers gives a mathematical analysis of the spectral
growth of the polar signals.

Index Terms— signal representation, polar transmitter,
polar signals, spectral growth

1. INTRODUCTION

Modern communication systems often suffer from a large
peak-to-average ratio (PAR). In a traditional Cartesian trans-
mitter doing an upconversion of the inphase (I) and quadra-
ture (Q) component of the complex baseband signal, the
power amplifier (PA) is requested to operate in a highly linear
mode. Due to the large PAR value, a large power back-off in
the PA is necessary, resulting in a lower energy efficiency.

Kahn proposed an envelope elimination and restoration
technique in [1]. Instead of mixing (i, q) by an IQ-modulator,
the amplituder and phaseθ of the complex baseband signal
are extracted from the IQ-signal, processed separately, and
recombined at the PA. In this case, there is no need for a
highly linear PA. The PA rather operates in the switch mode
with a significantly increased energy efficiency and reduces
the power consumption of the transmitter. Today this concept
is known as polar transmitter [2]. It is a promising transmitter
architecture to meet both the spectral and energy efficiency re-
quirement. The amplituder, phaseθ, and constant-envelope
phase-modulated signalejθ are called polar transmitter signals
or simply polar signals.

As a result of the changed signal representation inside the
modulator, a spectral growth has been observed: the polar
signalsr, θ have a much wider spectrum than the correspond-
ing Cartesian signalsi, q. As a rule of thumb, a factor 10
of spectral growth for the phase and a factor of 2–4 for the
amplitude is often cited from measurements and simulations
[3, 4, 5]. There are some heuristic explanations for the spec-
tral growth, but there have been no theoretical studies yet.

This is prohibitive for the system and circuit designers of po-
lar transmitters. They need to understand why and how does
the bandwidth of the polar signals increase in order to design
the modulator circuits properly.

This paper gives a theoretical analysis of the spectral
growth of the polar representation of communication sig-
nals. The analysis is done by assuming a complex-Gaussian
baseband signal and deriving its statistical properties (pdf, co-
variance function, spectrum) in the polar domain from those
in the Cartesian domain.

The paper is organized as follows: Section 2 introduces
the basic polar transmitter architecture. Section 3 discusses
the exact model and a simplified Gaussian model of the base-
band signal. Section 4 performs an analytic study of the spec-
tral growth of the polar signals under the simplified signal
model. The results are verified with simulations in section 5.

2. POLAR TRANSMITTER AND POLAR SIGNALS

Fig. 1 shows the basic architecture of a polar transmitter.
The baseband processor generates a sequence of discrete-time
complex symbolsan ∈ C. The continuous-timepulse shaping
filter g(t) ∈ R converts the sequence of complex symbolsan

to an analog complex-valued baseband signal

s(t) =
∞
∑

n=−∞

ang(t − nTsym) = i(t) + jq(t) = r(t)ejθ(t) = r(t)m(t)

(1)
where Tsym is the symbol period. The Fourier transform
G(ω) = F (g(t)) of g(t) determines the spectrum and band-
width of s(t). The inphase i(t) = Re(s(t)) and quadrature
componentq(t) = Im(s(t)) represent the Cartesian coordi-
nates ofs(t) and are called IQ- orCartesian signals. The
polar signalsare

r(t) = |s(t)| =
√

i2(t) + q2(t) ≥ 0,

θ(t) = arg(s(t)) ∈ [−π, π), (2)

m(t) = s(t)/|s(t)| = ejθ(t) ∈ C.

r(t) is theamplitudeor envelope.θ(t) is thephasecomponent
of s(t). m(t) is the complex-valuedconstant-envelope phase-
modulated signalwith |m(t)| = 1. The conversion from the
Cartesian domain (i, q) to the polar domain (r, θ) is typically
done by a coordinate rotation digital computer (CORDIC)
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[9, 10]. The complex baseband signal can then be written
ass(t) = r(t)m(t). This multiplication corresponds to the re-
combination in the PA in a polar transmitter. The transmitted
RF signal is

Re(s(t)ejωct) = r(t) cos(ωct + θ(t)) (3)

whereωc is the carrier frequency. Since the effect of the car-
rier ωc is well known (shifts a spectrum from baseband to
passband), this paper studies the spectral growth of the base-
band polar signalsr(t), θ(t),m(t) only.
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Fig. 1. Baseband representation of a polar transmitter

3. SIGNAL MODEL

3.1. The pdf approach

In a Cartesian transmitter, the baseband signals = i + jq is a
linear function ofi, q. Hence the spectrum ofs is simply the
sum of the spectra ofi, q if i andq are uncorrelated:

Css(ω) = Cii (ω) +Cqq(ω). (4)

Often, Cii (ω) = Cqq(ω) and thusCss(ω) = 2Cii (ω). This
means, there is no difference in the spectral shape between
the baseband signalsand its Cartesian componentsi, q.

This is not the case for the polar representationr, θ,m of
s because they arenonlinear functions of i, q. Therefore,
the 2nd order moments (covariance function and spectrum)
of r, θ,m do not only depend on the 2nd order moments of
i, q, but rather on their probability density function (pdf). If
only the spectra ofi, q are known but not their distribution,
the spectra ofr, θ,m cannot be determined. This is also true
in the opposite direction.

In order to predict the spectral growth of the polar
signals, one has to follow the pdf approach in Fig. 2.
Consider two baseband samplessk = s(tk) = ik + jqk =

rkejθk = rkmk, k = 1, 2 at the time instantst1, t2 with the
time lag t = t1 − t2. The starting point of the analysis
is the joint pdf p(i1, i2, q1, q2; t) of the Cartesian compo-
nents i1, i2, q1, q2. From that, one can calculate the joint
pdf p(r1, r2, θ1, θ2; t) of the polar componentsr1, r2, θ1, θ2
and then their bivariate pdfp(r1, r2; t), p(θ1, θ2; t), covariance
functionscrr (t), cθθ(t), cmm(t), and finally the corresponding
spectraCrr (ω),Cθθ(ω),Cmm(ω). There is no shortcut be-
tween the Cartesian spectraCii (ω),Cqq(ω) and polar spectra
Crr (ω),Cθθ(ω),Cmm(ω).

3.2. The exact signal model

To determine the joint pdfp(r1, r2, θ1, θ2; t), one needs to con-
sider the signal model fors(t). Recall theexact modelof the

Cartesian domain
p(i1, i2, q1, q2; t)

p(i1, i2; t)

cii (t)

Cii (ω)

p(q1, q2; t)

cqq(t)

Cqq(ω)

Polar domain
p(r1, r2, θ1, θ2; t)

p(r1, r2; t)

crr (t)

Crr (ω)

p(θ1, θ2; t)

cθθ(t), cmm(t)

Cθθ(ω),Cmm(ω)×

Fig. 2. The pdf approach to compute the spectra in the Carte-
sian and polar domain

baseband signals(t) in Eq. (1). an ∈ C is a sequence of i.i.d.
random variables with zero mean and varianceσ2

a. The pdf
of an depends on the constellation diagram of the modulation
and on the optional IFFT in OFDM systems. In general, the
exactpdf of the continuous-time baseband signals(t) is un-
known and difficult to determine. But it is easy to show that
• s(t) has zero mean and the covariance function

css(t + τ, τ) = σ2
a

∞
∑

n=−∞

g(t + τ − nTsym)g(τ − nTsym) (5)

wheret is the time lag andτ the absolute time instant.
• s(t) is notstationary becausecss(t+ τ, τ) depends both on

the time lagt and the absolute time instantτ. To be more
precise,s(t) is cyclostationary[11, 12] andcss(t + τ, τ) is
periodic inτ with the periodTsym. In theory,s(t) has no
spectrum as its spectral power distribution changes inτ
periodically.
• In [11], theaverage covariance function

c̄ss(t) =
1

Tsym

∫ Tsym

0
css(t+τ, τ)dτ =

σ2
a

Tsym

∫ ∞

−∞

g(t+τ)g(τ)dτ

(6)
and theaverage covariance spectrum

C̄ss(ω) = F (c̄ss(t)) =
σ2

a

Tsym
|G(ω)|2 (7)

are proposed to describe the average correlation and
spectral properties of a cyclostationary signal. Clearly,
the pulse shaping filterg(t) determines the spectrum and
bandwidth ofs(t).
• In general, the real and imaginary part ofan are depen-

dent (e.g. in a phase modulation with|an| = 1), but they
are uncorrelated due to rotation-symmetric constellation
pointsan. Sinceam andan are independent∀m , n, i(t1)
andq(t2) are also uncorrelated∀t1, t2.

3.3. A simplified signal model

Unfortunately, the above exact signal model is not suitable
for an analytic study of the polar signals because there is
no analytic expression for the joint pdf ofs(t). Below three
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model approximations are made leading to asimplified Gaus-
sian modelfor s(t) which allows an analytical study ofs(t) in
the polar domain:
A1) In the non-OFDM case, each value ofs(t) is a superposi-

tion of several independent symbolsan because the pulse
shaping filterg(t) has typically a length of several symbol
periods. In the OFDM case, eachan is the output of an
IFFT, i.e. a linear combination of an even larger number
of independent symbols. According to the central limit
theorem [12],s(t) is approximately Gaussian distributed
with zero mean.

A2) In the exact signal model,i(t1) andq(t2) are uncorrelated.
Sinces(t) is Gaussian in the simplified model,i(t1) and
q(t2) are also independent with identical variances. This
means,s(t) is circular complex Gaussian.

A3) s(t) is assumed to be stationary with the covariance func-

tion css(t) =
σ2

a

Tsym

∫ ∞

−∞

g(t + τ)g(τ)dτ and the spectrum

Css(ω) =
σ2

a

Tsym
|G(ω)|2 as in Eq. (6) and (7).

According to these assumptions,s(t) can be approximated by
a stationary, zero-mean, and circular complex Gaussian signal
whose statistical properties are completely described by the
2nd order moment ofs(t), i.e. its spectrum. Due to this distri-
bution assumption, it is now possible to compute the spectra
of the polar signalsr(t), θ(t),m(t) from those of the Cartesian
signalsi(t), q(t) by using the pdf approach in Fig. 2. Section
5 shows later how sensitive are the results with respect to this
model approximation.

4. SPECTRAL GROWTH IN THE POLAR DOMAIN

Let sk = s(tk) = ik + jqk = rkejθk = rkmk, k = 1, 2 be two
random samples ofs(t) at any two instantst1, t2. According
to the simplified circular complex Gaussian model, the real
random vector [i1, i2, q1, q2]T is N(0,C) distributed with the
covariance matrix

C =
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. (8)

σ2 is the identical variance ofi(t), q(t) andρ = ρ(t) is the
normalized correlation coefficient betweeni(t1), i(t2) as well
as q(t1), q(t2) with the time lagt = t1 − t2, respectively.
Note that the functionρ(t) is determined by the spectrum of
i(t), q(t). Starting with the pdfp(i1, i2, q1, q2), one can calcu-
late the pdf and covariance function of the polar components
[r1, r2, θ1, θ2]T .

This has been partly done in [6, 7, 8]. Below the covari-
ance functions ofr(t), θ(t),m(t) are summarized:
P1) The covariance function betweenr1 and r2 is crr (t) =
σ2

r ρr (ρ(t)) whereσ2
r = (2− π2)σ2 is the variance ofr and

ρr (ρ) =
2E(ρ2) − (1− ρ2)K(ρ2) − π2

(2− π2)
(9)

=
πρ2

4(4− π)

∞
∑

n=0

(

(2n− 1)!!
(2n)!!

)2 1
(n+ 1)2

ρ2n (10)

=
πρ2

4(4− π)


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(

1
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)2 1
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(
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
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



is the correlation coefficient betweenr1 and r2. K(ρ2)
andE(ρ2) are the complete elliptic integral of 1st and 2nd
kind, and (2n − 1)!! = 1 · 3 · . . . · (2n − 1) and (2n)!! =
2 · 4 · . . . · (2n) denote double factorials, respectively.

P2) Similarly, the covariance function betweenm1 = ejθ1 and
m2 = ejθ2 is cmm(t) = σ2

mρm(ρ(t)) with σ2
m = 1 and

ρm(ρ) =
E(ρ2) − (1− ρ2)K(ρ2)

ρ
(11)

=
πρ

4

∞
∑
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)2 1
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P3) The covariance function betweenθ1 andθ2 was unknown
and is derived for the first time in this paper in a similar
way as in [8]. It iscθθ(t) = σ2

θ
ρθ(ρ(t)) with σ2

θ
= π

2

3 and

ρθ(ρ) =
3ρ
2π

(

1+
1
2π
ρ +

1
6
ρ2 +

5
24π
ρ3 + . . .

)

. (13)

Computing the Fourier transform of the above covari-
ance functions results in the spectrum of the polar signals
r(t),m(t), θ(t):

Crr (ω) = σ2
rF (ρr (ρ(t))),

Cmm(ω) = σ2
mF (ρm(ρ(t))), (14)

Cθθ(ω) = σ2
θF (ρθ(ρ(t)))

whereρ(t) = cii (t)/σ2 = F −1(Cii (ω))/σ2 is determined by
the spectrumCii (ω) in the Cartesian domain. By using the
power series ofρr (ρ), ρm(ρ), ρθ(ρ) in Eq. (10), (12), (13) and
the fact that a multiplication in the time domain corresponds
to a convolution in the frequency domain, the spectra in the
polar domain become

Crr (ω) =
π

8
σ2

(

Γ2(ω) +
1
16
Γ4(ω) + . . .

)

,

Cmm(ω) =
π

4

(

Γ(ω) +
1
8
Γ3(ω) + . . .

)

, (15)

Cθθ(ω) =
π

2

(

Γ(ω) +
1
2π
Γ2(ω) +

1
6
Γ3(ω) + . . .

)

.

Γ(ω) = F (ρ(t)) = Cii (ω)/σ2 is the normalized spectrum in
the Cartesian domain and the notationΓk(ω) = F (ρk(t)) =
Γk−1(ω) ∗ Γ(ω) denotes the (k − 1)-times self-convolution of
Γ(ω). Actually, it is this self-convolution ofΓ(ω) which leads
to the spectrum growth in the polar domain.
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One interesting question is: If bothr(t) andm(t) have a
wider spectrum, why does the baseband signals(t) = r(t)m(t)
have a narrow, the originally given spectrum? Ifr(t) andm(t)
were independent, the covariance function ofs(t) would be
the product of the covariance functions ofs(t) andm(t). Then
the spectrum ofs(t) being the convolution of their spectra
would be even wider. This is fortunately not the case. Asr(t)
andm(t) are highly dependent [8], the spectrum ofr(t)m(t)
is not simply the convolution of the spectra ofr(t) andm(t).
In other words, the polar representation of the baseband sig-
nal implies only aninternal spectral growth inside the polar
modulator and does not change the spectrum of the transmit-
ted RF signal in Eq. (3).

Fig. 3 a) shows the normalized spectra ofi(t), r(t), θ(t),m(t)
for a Gaussian pulse shaping filterg(t) with the time-bandwidth-
productBTsym = 0.3. As expected, the polar signals have a
much wider spectrum thani(t). The reason that the phase sig-
nalsθ(t) andm(t) = ejθ(t) show a stronger spectral growth than
the amplituder(t) is that the higher-order self-convolutions
in Cθθ(ω),Cmm(ω) in Eq. (15) decay much slower to zero
than inCrr (ω). Fig. 3 b) demonstrates the same behavior for
a root-raised-cosine (RRC) pulse shaping filterg(t) with the
roll-off factorβ = 0.5. Cii (ω) is perfectly bandlimited in this
case, but the spectra of the polar signals are not bandlimited.
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Fig. 3. Normalized spectra in the Cartesian and polar domain
for a) Gaussian b) RRC pulse shaping filter

5. SIMULATIONS

One limitation of the above theoretical study is the use of the
simplified signal model in section 3.3. In reality,s(t) is not
perfectly Gaussian. The question is thus: How good are the
theoretical results for the practice?

Fig. 4 compares the theoretical results from the previous
section with those calculated from simulated data based on
the exact signal model in section 3.2. It shows the pdf1 and
normalized spectrum ofi(t), r(t), θ(t),m(t) for LTE downlink
(16-QAM, 2048-point IFFT, equal power in all OFDM car-
riers). Due to the large IFFT length,s(t) is almost perfectly
Gaussian. The result is a perfect match in both the pdf and
spectrum between the theory and simulation. This is also the
case when the OFDM carriers have different powers.

1Sincem= ejθ is complex, only the pdf of cosθ is shown.
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Fig. 4. Comparison between theory (- -) and simulation (—)
for LTE downlink

In another EDGE simulation, a sequence of random 8PSK
symbols is filtered by a Gaussian-like pulse shaping filter.
Since the EDGE pulse shaping filter is pretty short (roughly 5
symbols) in comparison to the IFFT length in LTE, the filter
outputs(t) in EDGE is much less Gaussian. Though the Gaus-
sian assumption is remarkably violated in this case, the agree-
ment in the spectra of polar signals between the theory and
simulation is still satisfactory (no plot due to limited space).

6. CONCLUSION

The choice of the internal representation of a communication
signal inside the modulator has a great impact to its spectral
properties. This paper gives an analytic study of the spectral
growth in polar transmitters. By assuming a simplified Gaus-
sian signal model, the spectral growth of the polar signals can
be predicted for any given spectrum of the IQ signal. Simula-
tions show that the theoretical results agree well with practice
even if the Gaussian assumption is sometimes violated.

The choice of the signal representation has also impact on
other signal processing issues in communication systems. For
example, the effect of a linear filtering or quantization of the
polar signals to the spectrum of IQ signal is nontrivial and has
also to be investigated.
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