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ABSTRACT

Power-line communications (PLC) commonly employs orthogonal

frequency-division multiplexing (OFDM) as the modulation tech-

nique, and impulsive noise has a significant negative impact on its

performance. Using the property of null subcarriers in OFDM and

the fact that impulsive noise is sparse, we formulate a minimiza-

tion problem to detect and estimate the impulsive noise. In previous

works, ℓ1-norm minimization was employed to achieve this task. In

this paper, we propose to use a smoothed ℓ0-norm minimization al-

gorithm for impulsive noise detection instead. Simulation results

show that this approach is promising as it achieves comparable per-

formance as ℓ1-norm minimization but with much lower complexity.

Index Terms— PLC, OFDM, impulsive noise, smoothed ℓ0-

norm, ℓ1-norm

1. INTRODUCTION

Power-line communications (PLC) is an alternative promising so-

lution for providing a fast and reliable data transmission through

power-lines for smart grid [1, 2]. The applications of PLC in

smart grids range from those in high voltage networks to low

voltage networks such as remote fault detection, monitoring the

networks, automatic meter reading, and vehicle-to-grid communi-

cations [2, 3]. However, power-lines were originally designed for

transmitting electricity power rather than data. Consequently, trans-

mitting data through power-lines faces some impairments related to

noise, impedance, and attenuation [4].

This paper focuses on solving the noise problem as it is the ma-

jor concern in PLC. In particular, the noise in PLC consists of back-

ground, narrowband, and impulsive noise [5]. Narrowband noise

is sometimes also regarded as part of the background noise [4, 6].

Background noise can be modeled as AWGN [4, 7, 8] while impul-

sive noise is often modeled as Bernoulli-Gaussian [8, 9].

Orthogonal frequency-division multiplexing (OFDM) is com-

monly adopted as the modulation technique in PLC. Although

OFDM demodulator (i.e. discrete Fourier transform (DFT)) spreads

the impulsive noise power in the frequency domain, high power of

the impulsive noise still affects the data symbols [10]. Thus, an

impulsive noise mitigation method is needed.

The impulsive noise mitigation can be conducted by first de-

tecting the impulsive noise and if detected, further processing can

be performed. The simplest impulsive noise detection is by using a

threshold. If a sample exceeds a certain threshold, the sample is as-

sumed to be contaminated by impulsive noise. Then, an appropriate
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nonlinear preprocessing (such as clipping) is employed [11, 12, 13].

However, this technique is prone to false alarm since OFDM has

large peak-to-average power ratio (PAPR) [14, 15, 16].

On the other hand, OFDM systems often use some null subcarri-

ers that do not carry information. In particular, more than half of the

subcarriers are occupied by null subcarriers in some modern PLC

standards [17]. For example, the PRIME standard uses 158 null sub-

carriers out of 256 subcarriers. With the aid of null subcarriers and

the fact that impulsive noise is sparse, in [10], principles of com-

pressive sensing [18, 19, 20] were used to detect and estimate the

impulsive noise modeled as Bernoulli-Gaussian. An extension to

bursty impulsive noise was proposed in [21]. The basic idea was to

estimate the number of impulsive noise samples by minimizing the

ℓ0-norm. However, working on ℓ0-norm directly is not easy as min-

imization of ℓ0-norm is NP-hard. As a result, some previous works

relaxed the minimization model by using the convex programming

algorithm with ℓ1-norm minimization.

In [22], an approximation of ℓ0-norm, called smoothed ℓ0-norm,

along with its minimization algorithm were proposed. Different

from the estimation using ℓ1-norm minimization, using the mini-

mization of smoothed ℓ0-norm algorithm yielded a lower complexity

while having the same (or better) accuracy. Its lower complexity mo-

tivates us to investigate its potential for impulsive noise detection in

power-line communications.

In this paper, we propose to use the smoothed ℓ0-norm mini-

mization algorithm for detecting impulsive noise in power-line com-

munications. In particular, we compare the impulsive noise detec-

tion performance of the proposed smoothed ℓ0-norm minimization

with the conventional one using ℓ1-norm minimization. The pro-

posed method yields lower complexity and simulation results show

that similar (or better) accuracy to the conventional detection method

can be achieved. In addition, we also present the effect of the number

of null subcarriers on the detection performance for smoothed ℓ0 and

ℓ1 algorithms. Simulation results show that the larger the number of

null subcarriers, the better the detection accuracy.

The rest of this paper is organized as follows. In Section 2 we

discuss the impulsive noise detection algorithm. In Section 3 we

present the simulation results. And the conclusions are given in Sec-

tion 4.

2. IMPULSIVE NOISE DETECTION ALGORITHM

2.1. System Model and Problem Formulation

Fig. 1 shows the equivalent complex baseband PLC system model.

The QPSK modulated data vector, X = [X0, X1, · · · , XN−1]
T ,

is passed to the N -point inverse discrete Fourier transform (IDFT)
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Fig. 1. System model.

block to form an OFDM symbol. x = [x0, x1, · · · , xN−1]
T =

FHX is then the OFDM symbol, where F is the N × N unitary

DFT Vandermonde matrix, (·)T and (·)H are transpose and Hermi-

tian transpose operator, respectively. Assume that there are K data

subcarriers and N −K null subcarriers. Without loss of generality,

we normalize the OFDM signal power.

The OFDM signal is appended by a cyclic prefix (not shown

in the figure) and passed to the PLC channel and contaminated by

AWGN, w, and impulsive noise, i. By assuming that the length of

the cyclic prefix is long enough to deal with interblock interference

(IBI), the received signal after dropping the cyclic prefix is given by

r = Hx+w + i, (1)

where H is an N ×N column circulant channel matrix with the first

column being normalized discrete-time channel impulse response

[21]. The AWGN has variance 2σ2
w . The impulsive noise is modeled

as Bernoulli-Gaussian as follows [9]

i = b ◦ g, (2)

where ◦ is Hadamard product operator, b is the Bernoulli sequence

of 1 and 0 with probabilities p and 1 − p, respectively, and g is a

random variable with Gaussian distribution with mean 0 and vari-

ance 2σ2
g . As a result, we have signal-to-(background) noise ra-

tio SNR = 1/2σ2
w and signal-to-impulsive noise ratio SINR =

1/2σ2
g . We also define INR = SNR/SINR.

The impulsive noise detection block is discussed in the follow-

ing. Let N be the set of indices of null subcarriers and NC its

complement. We can construct an (N −K) × N parity matrix F1

where the (N − K) rows are obtained from F that are in N , i.e.

F1 = F(N , :). We then have

S = F1r

= F1s+ F1w +F1i

= F1i+ w̃, (3)

where s = Hx, w̃ = F1w, and F1s = 0. Note that w̃ is also

AWGN and has the same mean and variance as w. The objective is

to find the sparsest solution of i as follows

(P0) ip = argmin
i
‖i‖0 subject to ‖F1i− S‖2 ≤ ǫ, (4)

where ‖i‖0 is the smoothed ℓ0-norm of i and ǫ is any positive num-

ber. Note that we will use (P0) to denote the smoothed ℓ0-norm

algorithm. The amplitude of the estimated impulsive noise, ip, is

then refined to get a better estimate. The refined estimated impul-

sive noise, îp, is then subtracted from the received signal to get the

clean signal, i.e. x̂ = r− îp. The signal is then passed to the OFDM

demodulator (i.e. the DFT).

2.2. The Smoothed ℓ0-Norm and Minimization Algorithm

Let us consider how to find the sparsest solution for Ay = z by

minimizing the ‖y‖0. In contrast to [22] where only real numbers

are considered, we are dealing with complex numbers so we use the

smoothed ℓ0-norm for complex numbers [23].

We define the ℓ0-norm of y = [y0, y1, · · · , yn−1]
T as the num-

ber of nonzero elements of y or

‖y‖0 =

n−1
∑

i=0

ν(yi), (5)

where

ν(y) =

{

1, |y| 6= 0,

0, |y| = 0.
(6)

We can developing an approximation of (6) by using a continuous

(smoothed) function, such as

fσ(y) = e
−

|y|2

2σ2 . (7)

As a result, we have

lim
σ→0

fσ(y) =

{

1, |y| = 0,

0, |y| 6= 0.
(8)

or [24]

fσ(y) ≈
{

1, |y| ≪ σ,

0, |y| ≫ σ.
(9)

We define

Fσ(y) =

n−1
∑

i=0

fσ(yi). (10)

Using (10), we can rewrite (5) as

‖y‖0 ≈ n− Fσ(y) (11)

for small σ. Note that when σ → 0, ‖y‖0 is close to the true solu-

tion (5). From (11), we can minimize ‖y‖0 by maximizing Fσ(y)
subject to Ay = z.

A small value σ results in a lot of local maxima. When σ is

large, the function becomes smoother and contains less local max-

ima, thereby easier to solve. As the algorithm requires σ → 0, one

strategy is to use a decreasing σ sequence, e.g. by using a gradient

algorithm. We start the algorithm by finding ŷ0, i.e. the solution for

σ →∞. This solution has been given in [22, 23, 24], as follows

Theorem 1 The solution of the problem

maxFσ(y) subject to Ay = z, (12)

where σ →∞ is the minimum ℓ2-norm solution of Ay = z, that is,

y = A†z, where A† = AH(AAH)−1 is the pseudo-inverse of A.
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Next step is to choose a sequence of σ, [σ1, σ2, · · · , σJ ],
where σ1 can be chosen two to four times of maxi |yi| [24].

The next values of σ can be calculated by σj = cσj−1, where

c is the σ decreasing factor and j = 2, 3, · · · , J . For each

value of σj , we maximize Fσ on Y = {y|Ay = z} by using

M iterations of the steepest ascent algorithm. For every iter-

ation, we calculate y ← y + (µσ2)∇Fσ = y − µδ, where

µ is a decreasing step-size parameter and δ , −σ2∇Fσ =

[y0e
−

|y0|2

2σ2 , y1e
−

|y1|2

2σ2 , · · · , yn−1e
−

|yn−1|2

2σ2 ]T .

The last step is to project back y to the feasible set Y , i.e. by

calculating y← y −A†(Ay− z). The final answer is y0 = yJ .

The above algorithm is summarized as follows:

1. Initialization

(a) Choose a solution for Ay = z, i.e. v0 = A†z.

(b) Choose a decreasing sequence of σ = [σ1, σ2, · · · , σJ ],
where σ1 can be chosen as two to four times of

max {v0}.
2. For j = 1, 2, · · · , J

(a) Set σ = σj .

(b) Maximize the Fσ on feasible set Y using U iterations

as follows:

i. Set y = vj−.

ii. For u = 1, 2, · · · , U

A. Calculate δ = [y0e
−

|y0|2

2σ2 , y1e
−

|y1|2

2σ2 , · · · ,
yn−1e

−
|yn−1|2

2σ2 ]T .

B. Calculate y← y − µδ.

C. Project y back onto feasible set

Y : y← y −A†(Ay − z).

End for

(c) Set vj = y.

End for

3. Output: y0 = vJ .

Now consider the noisy case z = Ay + ñ, where ñ is the

AWGN. The minimization problem can be formulated as follows

yp = argmin
y

‖y‖0 subject to ‖Ay − z‖2 ≤ ǫ. (13)

Note that the previous (noiseless) algorithm can also be applied to

this noisy case. However, in this case the accuracy of the estimated

y is bounded by noise power [24].

For impulsive noise detection, our problem formulation of (4)

is similar to (13) by simply replacing the parameters as follows:

{A,y, z} → {F1, i,S}.

2.3. Postprocessing

We conduct postprocessing to the amplitude of raw estimated impul-

sive noise to get îp. The procedure is as follows [10, 21]:

1. Solve (4) to get the raw estimated values ip.

2. Estimate the support Ip = {j : |ip(j)| > th}, where th =

k ×√2σ2
w and k is the multiplication constant given by k =

√

2 ln ((1− p)/p · σg/σw) [25].

3. Recalculate the amplitude of ip by using least-square (LS) or

MMSE as follows. We construct an N ×m selection matrix

Sm, where m is the cardinality of estimated impulsive noise

samples, m = |Ip|. The elements of the matrix is Sm(i, j)=1

for i ∈ I, j = 1, 2, · · · ,m and 0 otherwise. Finally, we

calculate

(a) LS

îp = B
−

S
H
mF

H
1 S, (14)

or

(b) MMSE

îp = [(σ
w/σ


g)I+B]−

S
H
mF

H
1 S, (15)

where B = SH
mFH

1 F1Sm.

3. SIMULATION RESULTS

We simulate an OFDM system with QPSK modulation, N = 256
and N −K = 128 (19% lower than PRIME) to show the ability of

(P0) algorithm1 to recover the impulsive noise samples. Impulsive

noise occurrence is rare (at most a few impulsive samples in every

OFDM block) in practical systems [10]. In this paper, without loss

of generality, we assume that every OFDM symbol is contaminated

with three or five impulsive noise samples with random positions, i.e.

p ≈ 0.01 or p ≈ 0.02, respectively. The channel impulse response

is as in [15] and we set SNR = 20 dB, INR = 30 dB. Moreover,

the parameters for (P0) algorithm are as follows: µ = 2.5, σJ =
0.3×√2σ2

w, σ decreasing factor 0.5, and U = 3.

As a baseline, we compare (P0) with (P1), which uses the con-

ventional ℓ1-norm minimization as follows

(P1) ip = argmin
i
‖i‖1 subject to ‖F1i− S‖2 ≤ ǫ, (16)

where ‖ · ‖1 is the ℓ1-norm and ‖ · ‖2 is the ℓ2-norm. Following

[19, 21], we set a threshold, ǫ, such that ‖w̃‖2 ≤ ǫ with probability

ξ. To be feasible we choose ξ = 0.95. Note that ‖w̃‖22 is a chi-

squared distribution with 2(N −K) degrees of freedom, χ2
2(N−K) .

We, then, have ǫ2 = χ2
2(N−K)(0.95)2σ

2
w , where χ2

2(N−K)(0.95) is

the 95th percentile of χ2
2(N−K) . The postprocessing steps are similar

to those in Section 2.3, except that we use k = 1 in the second step.

We use ℓ1-magic with a log-barrier algorithm for (16) [26]. From

now on, we will use the terms (P1) and ℓ1-magic (with a log-barrier

algorithm) interchangeably.

Fig. 2 shows the amplitude parts of the impulsive noise samples

for original and estimated values using (P0) and (P1) algorithm be-

fore the postprocessing for one random OFDM symbol. It can be

seen that the impulsive noise by using (P0) is recovered better than

(P1). The amplitude values are then refined by using LS as discussed

in Section 2.3.

To analyze the capability of impulsive noise detection, we in-

troduce the residual interference-plus-(background)-noise signal as

follows [10, 21]

ρ = i− îp +w (17)

The normalized variance of (17) is θ = var(ρ)/var(w). Fur-

thermore, the mean-error square (MSE) of the estimated sam-

ples is MSE = ‖i− îp‖2 and the ”signal-to-noise” ratio is

1We use the publicly available program code for ℓ0-norm minimization
from http://ee.sharif.edu/˜SLzero.
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Fig. 2. Recovery of impulsive noise using (P0) and (P1) algorithms.

Table 1. Statistical performance comparison of (P0) compared to

(P1) minimization.

m
θavg MSEavg(×10−3) ηavg (dB)

(P0) (P1) (P0) (P1) (P0) (P1)

3 1.06 1.08 0.837 1.09 25.8 24.1

5 1.06 1.14 1.09 1.81 25.9 23.6

η(dB) = 20 log ‖i‖2/‖i− îp‖2. We then performed the experi-

ments and repeated 100 times. The average statistical performance

comparison of those parameters is shown in Table. 1. Note that if

the estimated samples are the same as the original samples we have

θavg = 1. In addition, the number of experiments that yielded η
larger than 20 dB was 91 (m = 3) and 95 (m = 5) among 100 runs

for (P0). However, it was just 76 (m = 3) and 73 (m = 5) for

(P1). It is clear that (P0) algorithm outperforms (P1) algorithm, by

having lower MSE and higher η.

We also present the average F-measure, precision of recovery,

and recall of support recovery for the estimated samples after post-

processing as shown in Table. 2. F-measure is F = (2PR)/(R +
P ), the precision of recovery is defined as P = |Ip ∩ I|/|Ip|, and

the recall of support recovery is R = |Ip ∩ I|/|I| [27].

Next, we compare the complexity in terms of the CPU process-

ing time. The average processing time for one run was 2.56 millisec-

onds for (P0) and 1.15 seconds for (P1). It shows that the estimated

value using (P0) minimization can represent the original value better

while having three orders of magnitude faster in running time than

ℓ1-magic.

Fig. 3 depicts the ηavg performance vs. the number of null sub-

carriers for (P0) and (P1) algorithms with m = 3 and m = 5. Con-

sistent with the nature of compressive sensing, the larger the number

of null subcarriers the better the detection accuracy. Furthermore, for

a large number of null subcarriers, the ηavg values for both m = 3
and m = 5 are almost the same.

4. CONCLUSIONS

We have investigated the use of smoothed ℓ0-norm minimization al-

gorithm for detecting impulsive noise in OFDM-based PLC. The im-

pulsive noise can be considered as a sparse signal that is to be recov-

ered by using compressive sensing approach by utilizing the property

Table 2. F-measure F , precision of recovery P , and recall of support

R performance comparison of (P0) compared to (P1) minimization.

m
Favg Pavg Ravg

(P0) (P1) (P0) (P1) (P0) (P1)

3 0.971 0.924 0.970 0.975 0.980 0.897

5 0.970 0.940 0.965 0.988 0.980 0.906
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Fig. 3. Performance of ηavg vs. the number of null subcarriers.

of null subcarriers in OFDM systems. We have compared the per-

formance of the smoothed ℓ0-norm minimization algorithm with that

of the ℓ1-norm minimization conventional recovery algorithm (using

the ℓ1-magic tool with a log-barrier algorithm). Simulation results

have shown that the proposed method yields lower complexity in

terms of CPU processing time and provides a good estimate.
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communication in medium-voltage system: Simulation model

and onfield experimental tests,” IEEE Trans. Power. Del., vol.

27, no. 1, pp. 62–69, 2012.

[4] H. Meng, Y. L. Guan, and S. Chen, “Modeling and analysis of

noise effects on broadband power-line communications,” IEEE

Trans. Power Del., vol. 20, no. 2, pp. 630–637, 2005.

[5] T. M. Lukusa, K. Ouahada, and H. C. Ferreira, “Frequency

mappings with hadamard transform for power line communi-

cations channel,” in Int. Symp. Power Line Communications

and Its Applications, 2011.

[6] M. Zimmermann and K. Dostert, “Analysis and modeling

of impulsive noise in broad-band powerline communications,”

3235



IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 249–

258, 2002.

[7] G. Ndo, P. Siohan, M-H. Hamon, and J. Horard, “Optimization

of turbo decoding performance in the presence of impulsive

noise using soft limitation at the receiver side,” in Proc. IEEE

Global Telecom. Conf., 2008, pp. 1–5.

[8] G. Ndo, P. Siohan, and M-H. Hamon, “Adaptive noise mit-

igation in impulsive environtment: Application to power-line

communications,” IEEE Trans. Power Del., vol. 25, no. 2, pp.

647–656, 2010.

[9] M. Ghosh, “Analysis of the effect of impulse noise on multicar-

rier and single carrier QAM systems,” IEEE Trans. Commun.,

vol. 44, no. 2, pp. 145–147, 1996.

[10] G. Caire, T. Y. Al-Naffouri, and A. K. Narayanan, “Impulse

noise cancellation in OFDM: An application of compressed

sensing,” in Proc. IEEE Int. Symp. Information Theory, 2008,

pp. 1293–1297.

[11] F. H. Juwono, Q. Guo, D. Huang, and K. P. Wong, “Deep

clipping for impulsive noise mitigation in OFDM-based power-

line communications,” IEEE Trans. Power Del., vol. 29, no. 3,

pp. 1335–1343, 2014.

[12] S. V. Zhidkov, “Performance analysis and optimization of

OFDM receiver with blanking nonlinearity in impulsive noise

environment,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp.

234–242, 2006.

[13] S. V. Zhidkov, “Analysis and comparison of several simple im-

pulsive noise mitigation schemes for OFDM receivers,” IEEE

Trans. Commun., vol. 56, no. 1, pp. 5–9, 2008.

[14] C-H. Yih, “Iterative interference cancellation for OFDM sig-

nals with blanking nonlinearity in impulsive noise channels,”

IEEE Signal Processing Letters, vol. 19, no. 3, pp. 147–150,

2012.

[15] F. H. Juwono, Q. Guo, D. Huang, and K. P. Wong, “Joint

peak amplitude and impulsive noise clippings in OFDM-based

power line communications,” in Proc. Asia Pacific Conf. Com-

munications, 2013, pp. 567–571.

[16] K. M. Rabie and E. Alsusa, “Improving blanking/clipping

based impulsive noise mitigation over powerline channels,” in

Proc. Int. Symp. Personal Indoor and Mobile Radio Communi-

cations, 2013, pp. 3413–3417.

[17] J. Lin, M. Nassar, and B. L. Evans, “Non-parametric impul-

sive noise mitigation in OFDM systems using sparse bayesian

learning,” in Proc. IEEE Global Communications, 2011, pp.

289–301.

[18] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty

principles: Exact signal reconstruction from highly incomplete

frequency information,” IEEE Trans. Inf. Theory, vol. 52, no.

2, pp. 489–509, 2006.

[19] E. J. Candès and P. A. Randall, “Highly robust error correction

by convex programming,” IEEE Trans. Inf. Theory, vol. 54,

no. 7, pp. 2829–2840, 2006.

[20] T. Y. Al-Naffouri, A. A. Quadeer, and G. Caire, “Impulse noise

estimation and removal for OFDM systems,” IEEE Trans.

Commun., vol. 62, no. 3, pp. 976–989, 2014.

[21] L. Lampe, “Bursty impulse noise detection by compressed

sensing,” in Proc. Int. Symp. Power Line Communications and

Its Applications, 2011, pp. 29–34.

[22] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Fast sparse

representation based on smoothed l0 norm,” in Proc. 7th Int.

Conf. Independent Component Analysis and Signal Separation

(ICA), 2007, pp. 389–396.

[23] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Complex-

valued sparse representation based on smoothed ℓ0 norm,”

in Proc. Int. Conf. Acoustics, Speech, Signal Processing

(ICASSP), 2008, pp. 3881–3884.

[24] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast ap-

proach for overcomplete sparse decomposition based on ℓ0

norm,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–

301, 2009.

[25] H. Zayyani and M. Babaie-Zadeh, “Thresholded smoothed-ℓ0

(sl0) dictionary learning for sparse representation,” in Proc.

Int. Conf. Acoustics, Speech, and Signal Processing, 2009, pp.

1825–1828.

[26] E. Candes and J. Romberg, “ℓ1-magic: Recovery of

sparse signals via convex programming,” online, available at

www.acm.caltech.edu/l1magic/downloads/l1magic.pdf, 2005.

[27] P. Ghosh, M. E. Sargin, and B.S. Manjunath, “Robust dynam-

ical model for simultaneous registration and segmentation in a

variational framework: A Bayesian approach,” in Proc. The

12th IEEE Int. Conf. Computer Vision, 2011, pp. 709–716.

3236


