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ABSTRACT

In this paper, we consider the problem of channel and phéase as-
timation for an orthogonal frequency division multiplegi(OFDM)
radio link. We solve this problem by first investigating thibspace
in which the phase noise spectral vector lies and then exmoi
this information during estimation. Building upon earligorks,
the phase noise spectral estimate is obtained by minim&ihg-
mogeneous quadratic cost function and the channel estimates
depends on the obtained phase noise estimate. We showtthmat, a
finite signal-to-noise ratio, the true phase noise speestainate lies
in the null space of the matrix associated with the cost fonctWe
utilize this knowledge by imposing constraints that adher¢his
null space when minimizing the cost function. In additiore also
propose constraints based on knowledge of the covariantexma
of the phase noise process. Through simulations, we deratest
lower phase noise mean-square error (MSE) and conseql@andy
channel MSE when incorporating the subspace information.

Index Terms— Phase Noise, OFDM, Channel Estimation, Null
Space, Optimization

1. INTRODUCTION

There are three major principal operations performed inradyo

transceiver: frequency mixing, power amplification andlegdo-

digital (AD) or digital-to-analog (DA) conversion. Frequey mix-

ers are associated witdesired phase noisehich is random per-
turbations in the phase of the carrier signal (generated mcal

oscillator) that is used to transmit the information begusignal. It

arises due to component imperfections that make the dseiltér-

cuitry [1-3]. In this paper, we consider an orthogonal frery

division multiplexing (OFDM) radio link impaired by only pise

noise. With respect to OFDM, phase noise destroys the aotralg
ity between subcarriers thereby resulting in inter-carmterference
(ICI) and eventually causing severe performance degmaaathen

left untreated. Some recent studies on the effects of phzise nan
be found in [4-8]. A comprehensive overview of the subject ba

found in [9]. This recognition of performance loss has spedva
plethora of estimation and compensation algorithms thagrtehe

effects of phase noise e.g., [10-15] and references therein

In this paper, we improve the phase noise estimation scheme

proposed in [13] that is used for obtaining a channel esémat
Specifically, using a full-pilot OFDM symbol, a least-sgesichan-
nel estimator is derived which depends on knowledge of ttasg@h
noise and, hence, phase noise must be estimated. Suchraatest
obtained by minimizing a homogeneous quadratic cost fanctiib-
ject to a linear constraint. By this approach of channehestion,
one can see that the channel mean-square error (MSE) isect dir

correspondence with the phase noise MSE. The approach jn [13

does not indicate or highlight as to what constraints to isepo
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When restricted to linear constraints, one can think of msungh
constraints, however, there is lack of clarity as to whick amould
yield the best performance. The linear constraint prop@s§hB] is
applicable only for small phase noise levels while poor phasise
estimates will be obtained for moderate-to-high phaseeneigels.

In this work, we investigate the nature of the matrix chagact
izing the cost function. The purpose is to determine in wisighce
the phase noise spectral vector lies and this informatidirpvavide
an indication for designing a good constraint. Specificallynfinite
signal-to-noise ratio, we show that the phase noise speactor
lies in the null-space of the matrix associated with the ¢ost-
tion. We can exploit this information, for obtaining a phassse
estimate, by restricting the search space to this particuispace.
From a practical perspective, such an approach is appticdbb at
medium-to-high signal-to-noise ratios. On the other hé#frible type
of phase noise process is known then we can exploit its sexatet
statistical information. Specifically, the constraint setresponds to
the subspace spanned by the eigenvectors of the covariaatcix m
of the phase noise process.

2. SYSTEM MODEL

We consider an OFDM radio link wherein a (column) vecioof
information symbols(s; }j";gl is transmitted usingV. orthogonal
subcarriers [16]. In this paper, we consider only the effgfcte-
ceiver phase noise while assuming a high-fidelity oscitlatothe
transmitter. Such a scenario can be, for example, downtahst
mission where the base station is the transmitter whilegbeiver is
a mobile terminal. Assuming sufficient timing synchroniaaf the
received symbol vectar, with elements{r; }j.\';gl, is given by

1
where H is a diagonal matrix composed of elemedtd; } 1<,
which are the discrete Fourier transform (DFT) of the chawinde
the vectom is white Gaussian noise with diagonal covariance ma-
trix whose diagonal values are equabtp. The unitary matrixV is
column-wise circulantvith the column vectod whose elements are
given by

r=VHs+n,

Nel s6[n]

——e TN k=01, N~ 1,

@

n=0

wheree?’™ is the complex exponential of the phase ndipg. The
kth column ofV is obtained by circularly shiftingy, £ — 1 times to

the bottom. Using (2);; can be expressed in termsgfas
Ne—1
T = ((50Hj>8j =+ Z (5k—_ij)$k +n; (3)
k=0,k#j
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When there is no phase noise, we hdye= 1 andd;, = 0, k # 0.
From (3), we see that phase noise introduces two undesiraa qu
tities: One is rotation of the desired symhbgl by 6o H; which is

1. Consider the vectow = SFh. Since the diagona matrix

is of full rank andF'; has full column rank of. columns, the
vectorw lies in anL-dimensional subspace. Also, the matrix

P, is an orthogonal projection matrix onto the space spanned
by the columns o8F:. This implies

known as the common phase error (CPE), and the second isge cau
interference from other subcarriers, also known as iraerier inter-
ference (ICl), which is given by the second term in (3). Inidheal
case of knowing), we could form the matri%/ and performvr to
undo the effect of phase noise. But, in practice, we do not liaig
knowledge and, hence, it needs to be estimated from

(In. = P)w=0% (Ix. —PO)w' =0  (6)
wherew™ is the conjugate ofv and the equivalence follows
sinceP, = P;.

3. CHANNEL AND PHASE NOISE ESTIMATION 2 The matrism = RTR*—RTPTR* — RT (In. — PT) R*
whereR™ denotes conjugate @, can be interpreted as the
correlation betweerR* and its projection onto the space
defined by(In, — PT). The structure oR* is given by

We build upon the channel and phase noise estimation mettwad p
posed in [13]. We first briefly summarize the approach afteicivh
we analyze the cost function that is minimized for obtairénghase
noise estimate. +
The goal is to estimate the channel. For this purpose, a full- r

. . ) T
pilot OFDM symbol is used i.e., we have full knowledge of tleev R — r'Py )
tor s in (1). Leth denote the time-domain channel vector whose N :
elements argh[n]}LZ) where L denotes the number of channel rfPI'V )

taps. First, we derive the least-squares estimate of thaetiés
time domain channeh. Rewriting (1) in terms oh, we haver =
VSF:h + n, whereS is a diagonal matrix with elements and the
N. x L matrix F is the truncated DFT matrix obtained from the
N¢ x N. DFT matrixF. The least-squares estimatelofollows by
minimizing ||r — VSFh||? w.r.t. h and is given by

where P; denotes theV. x N, permutation matrix and is
given byP, = (Pl)’. The first column ofP; is given by the

N. x 1vector[0, 1,0, ..., 0]" and thejth column is obtained
by circularly shifting the vectoj — 1 times to the bottom.

- -1 Proposition 1. Denote the null space &1 by A/(M). Then at
_ (piatvt ISIAval
h=(Fls'VIVSF) Fis'V'r infinite SNRG € A’(M).

-1
_ (piat iR val
- (Fts SFt) FS'VTr, @ Proof. We need to shovM§ = 0. At infinite SNR, from (1), we

haver = Vw and, after substituting it iR ", we have

where we used the fact thAf'V = Iy, with Iy, denoting the

N. x N. identity matrix. We have also replacéd by V which

wi(VT§)
is our estimate oV as we do not knowW. Such an estimate can wi(VIP.5)
be obtained by substituting (4) back inte — VSFh||?>. Ex- R'S — ! —wt 8)

panding||r — VSF;h||*> while writing B = F{STSF, andP, =
SF.:B~'F|S' (which is an orthogonal projection matrix onto an
L-dimensional space), we have

wi(VIPy, _10)

since theN. x 1 vectorVIP;§ = [0, 0,...,1,0,...,0]T where
) the value of one occurs in thHéh row. This results becausé is
unitary circulant withs. Thus,Mé = R™ (In, — P})R*6 =
R" (Iy, — PT) w” = 0 after using (6). O

[Ir — VSFt}AlH2 =rfr — VP, Vir = 3]\M3

whereM = (R'R — RTPrR)T is Hermitian andR. is column-
wise circulant matrix with column vectet The vecto® denotes our
estimate of8. In deriving (5), we enforced to be circulant (with We conclude this section with a note on the dimensionality of
column vectord) and unitary i.e. VIV = Iy, since we know the N/(M) as it indicates irhow big a spacehe vectors lies. From
fact thatV is a unitary column-wise circulant with This simplifies  (7), we can see that, in gener®l;" is a full-rank matrix and, since,
the expression into a nice homogeneous quadratic costidanas  (In, — P) has rankN. — L, we must have the rank &1 also
seen in (5). A phase noise estimate can be obtained by mingniz equal toN. — L and, hence, the dimensionality &f(M) is equal

(5) and, since it is homogeneous, the minimizer is the nudtareof ~ to L which is the number of channel taps.

zeros. Since the actual vectdris non-zero, we need to impose a

constraint when minimizing (5).
90 4. SUBSPACE-BASED PHASE NOISE MINIMIZATION

3.1. Nature of theM matrix In this section, we present some optimization problemseRploit
In this part, we show that, at infinite SN@,lies in the null space information on the space in whidhlies. In general, the computa-
of M. Thus, if we restrict our search to this subspace by choosingional complexity in minimizing (5) is proportional to théndension
constraints that correspond to this space, we will obtamdgshase  of 4 which is equal taV,. In practical systemsy, can be well over
noise estimates and consequently good channel estimatggsad-  a few thousand and, thus, the complexity in solving (5) cagute
tice such an approach is applicable also at high SNRs. Weeprovhigh. A way around this problem is to exploit the fact that tafs
our main result in Proposition 1 but let us first make the foifg the power in the vectod is confined to only a few low-frequency
observations: components because, in practice, the oscillators are robigyith
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tolerable phase noise levels. Utilizing this informationr model of

& is given by
Iy, ~ On, N
. 2 X2 2 X2 . N
0= |On.—nx¥ O,_nyxx |d=LJ 9)
Oyxy Ty

whered comprises of theV < N. non-zero components éfwhile
the rest are set to zero. Note that we estimate the top arahibptirt
of 6 which corresponds to positive and negative frequenciete cesh

around zero. We assumié to be even without any loss in generality.

Substituting (9) in (5), the cost function to be minimizedjigen by

C(8) = 6'™Mé (10)
whereM = LiML.
some phase noise optimization problems and conclude witima s
mary of the optimization problem considered in [13] for thegpse
of comparison.

4.1. NsPM: Nullspace-based Phase Noise Minimization

We would like to minimize (10) while at the same time incorger
the knowledge thal € A(M). From (9), we havé = Lé imply-
ing 8 = L4 where we used the fact thef L = Iv. Let N denote
the matrix whose columns spa¥i(M). Thus, enforcing the con-
straint thatd € A (M) implies enforcingd € span(L'N) where
span(X) denotes span of the columns of the mafKx To put it
another way, we essentially mag(M) to span(L'N). Based on
this rationale, we propose the following optimization desb:

Minimize C(8) = §

st 8'd =1, § € span(L'N) (11)
In (11), we have enforced a unit-norm constrainorUsing Parse-
val's theorem, it can be easily shown tléahas unit-norm [17] and
since we assume most of the power idithen the unit-norm con-
straintin (11) is reasonable. Writidg= LN, the above problem
expressed in terms af is given by

Minimize C(a) = a (NTLMLTN) a

st al (NTLLTN> a=1 (12)

The optimization problem (12) can be solved as follows: Let
NTLL'N = WWT be the Cholesky decomposition. Then writing

~ = W'a, the minimization problem simplifies to

Minimize C(v) =7 Qv st vy =1 (13)
whereQ = (W™ H)NTLML'N(WT)~1. The minimum value for
the above problem is equal to the smallest eigenvalu® aind if
the eigenvalues are distinct then the minimizer correspdadhe

eigenvector associated with the smallest eigenvalue.

4.2. CvPM: Covariance-based Phase Noise Minimization

In the remainder of this section, we present

in which the vector will always be drawn from [18, Appendix.C]

With this fact in mind, the optimization problem is framed as
Minimize C(é) = §T1\~/I§, §T§ =1,6¢ span(U) (14)

whereN x N unitary matrixU contains the eigenvectors bf CL

with C denoting the covariance matrix éf Closed-form expres-

sions forC of a Wiener phase noise process as well as a PLL-type

phase noise process can be found in [15]. Making a varialadaggh

by writing § = U« and noting thalUTU = I, we have
Minimize C(a) = oﬂL(UTI\~/IU)oz7 st ala=1 (15)

The minimizer is equal to the eigenvector associated witrsthall-

est eigenvalue ofUTMU).

4.3. CoPM: Correlation-based Phase Noise Minimization [1]3

We now briefly summarize the optimization problem considere
[13] for the purpose of comparison. Specifically, the optation
problem is as follows:

Minimize C(8) = 8 M st 8'e=1, (16)
wheree = [10,...0]T isaN x 1 column vector. The constraint in
(16) can be interpreted as follows: We would like our miniemito
have maximum correlation with the vectarin the absence of phase
noise, the actual phase noise spectral vegter Le. For very small
phase noise levels, we can exp&¢b be very close td.e and, thus,
the constraint in (16) is applicable in this case. Howevemplaase
noise levels get larger, the correlation betwéeandLe gets weaker
and thereby, using the constraint in (16) will yield poor phaoise

estimates The minimizer to (16) can be easily derived agiven
-1
by é = °

eTM le”

5. NUMERICAL RESULTS

We now demonstrate simulation results incorporating tlepased
phase noise estimation schemes. The performance of theneshe
are evaluated by the mean-square error (MSE) metric. We atmp
the error between our estimafeand the true value given by, The
channel estimate is given by (4) which dependsdothrough the
matrix V. Thus, we see that the error in our channel estimate is in
direct correspondence with the phase noise estimation &ine er-
rors are evaluated for different realizations of the OFDMgmnble
symbol after which they are averaged to obtain the MSE. The sy
tem parameters used in our simulations are as follows: Theeu

of subcarriersN. = 512, subcarrier spacings,, = 15 kHz and
bandwidth is equal 1.7 MHz. For phase noise estimation, we es-
timate a total ofN = 7 components o while the rest are set to

a value of zero. The symbol constellationl&QAM. The channel

is Rayleigh fading with exponential power delay profile andiber

of taps () set to four i.e.,L. = 4. The coherence bandwidth is set
to 800 kHz. Phase noise process used for the simulations is of the
Wiener type. We denote by as the3-dB bandwidth of the oscil-
lator power spectral density (PSD). A larg@B bandwidth implies
higher phase noise levels and vice-versa. With respect DNQF

If we had prior knowledge on the type of phase noise process th the ratiop = fi determines the ICI power level and can be inter-

we can model our constraints based on the covariance métiteo
phase noise process. The motivation is as follows: For amyara
vector, the eigenvectors of its covariance matrix deteerttre space
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preted as the normalized phase ndis#B bandwidth. A largeg-dB
bandwidth oscillator PSD can be compensated by having a tary-
carrier spacing.
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Fig. 1 Pha_se noise and Ch*”?””e' MSE as a function of the signahg 2. Phase noise and channel MSE as a function of the ratio
to-noise ratio. The phase noise MSE curves are shown by thie so =" ™ 3
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~InFig. 1, we plot the phase noise and channel MSE as a funcgjy \hile the second one utilizes information from the cdaace
tion of the SNR. The phase noise estimation methods showmein t ,atrix. The phase noise estimation problem is posed as an opt

figure are the proposed NsPM and CvPM minimization schemes ghization problem where a homogeneous quadratic cost hmii
Section 4 and we compare them with the CoPM of [13]. We see thahinimized. We show that, at infinite signal-to-noise ratiee de-
the NsPM and CvPM schemes provide superior MSE performancgjreq phase noise spectral vector lies in the null spaceeofriitrix
compared to the CoPM scheme. As expected, the CvPM schemg@qciated with the cost function. We exploit this inforimatby
performs _the best since it exploits statistical informatabout the imposing linear constraints when minimizing the cost fiorct The
ph_as_e_ noise process. However, the method_works well _o_”'Y‘Whe linear constraints correspond to this phase noise spesthespace.
priori information about the type of phase noise processagable.  The second approach exploits the subspace informatiofabiein
In that respect, the NsPM does not require any knowledge &f thiha covariance matrix of the phase noise process. The pEdpusb-

type of phase noise process and only exploits informatiowlich 5506 hased methods provide phase noise and channel estifvait
subspace the actual phase noise spectral vector lies.&tteadly at  agyt in lower mean-square error levels.

infinite SNR, from Proposition 1, this space correspondsi¢onull
subspace of the matrixI. Thus, at low SNR, we can expect Propo-
sition 1 to not hold which can be indirectly inferred from tiigure 7. REFERENCES
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