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ABSTRACT
Multi-scale, multi-lag (MSML) models are adopted for time-
varying (ultra)-wideband channels that are relevant for under-
water acoustic, radar and ultrawideband radio applications.
MSML channels are characterized by a limited number of
paths, each parameterized by a delay, Doppler scale, and at-
tenuation factor. Herein, a novel MSML channel estimator is
proposed. First, in the Fourier domain, it is shown that there is
an approximately linear relationship between the received sig-
nal and the Doppler scales that enables the recasting of chan-
nel estimation into a convex optimization problem. Second,
the inherent sparsity of many MSML channels is exploited
resulting in a further improvement in estimation performance
of about 5 dB in low SNR relative to an unstructured esti-
mation method. Finally, the resultant estimation strategy has
very low implementation complexity.

Index Terms— Multi-scale multi-lag, underwater com-
munication, sparsity, Doppler scale.

1. INTRODUCTION
Modern communication applications have driven the interest
in time-varying, wideband communications. In particular,
underwater acoustic (UWA) communications are of interest
in surveillance, environmental monitoring and tsunami detec-
tion; the effects of the low speed of sound in water and high
relative mobility must be combatted. Reliable UWA com-
munication necessitates accurate channel estimation. These
wideband communication channels, such as UWA and radar,
can be well-represented by multi-scale multi-lag channel
(MSML) models [1–3]. We observe that Doppler distortion
in wideband channels reveals itself as a time scaling of the
transmitted signal [3]. For terrestrial radio channels, there
is strong interest in the use of OFDM signaling, due to the
fact that it decomposes a static frequency selective channel
into a number of flat channels, enabling low complexity de-
tection at the receiver. In UWA communication, the time
scaling of the signal causes different subcarriers to be shifted
by different frequencies, resulting in significant inter-carrier
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interference [4, 7] which further underscores the need for ac-
curate channel estimation in order to enable the equalization
of the resulting interference.

While prior art has designed channel estimation algo-
rithms for MSML channels by assuming a single, dominant
scale [8, 10], this assumption can lead to performance degra-
dation. Another approach is to explicitly consider the multiple
scales. The methods proposed in [5, 6, 9] adapt classical sub-
space methods from array signal processing to estimate the
channel parameters including the scales. While offering good
performance, these methods suffer from high computational
complexity as they require multiple singular value decompo-
sitions or matrix inverses. In particular, our proposed method
has complexity that is squared with respect to the filter length
whereas our prior method in [5] has complexity that is cubic
in this parameter.

In this paper, we show that an approximately linear rela-
tionship between the received signal samples in the Fourier
domain and Doppler scale parameters holds for small scale
values. Furthermore, considering the sparse nature of un-
derwater acoustic channels (doubly selective multipath chan-
nels), we enforce a sparsity constraint to estimate the chan-
nel gains and delays resulting in better accuracy. Our al-
gorithm requires only multiplications and thresholding, and
is thus of modest complexity. While we focus on OFDM
signaling herein, our proposed method is easily adapted to
other modulations. We observe that [10] also exploits the idea
of linearity, but employs a piece-wise linear approximation
via partial Fast Fourier Transform outputs. A single scale is
assumed and estimated by a maximum-likelihood algorithm
which searches over the candidate support of Doppler scale.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the OFDM signaling and MSML channel
model. Section 3 develops the linear approximation for the
MSML channel in the Fourier domain. In Section 4, we
jointly exploit the linear relationship and the sparse structure
of the MSML channel to design our channel estimation algo-
rithm. Simulation results are presented in Section 5 and the
paper is concluded in Section 6.

3222978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



2. SYSTEM MODEL
The OFDM signal in passband can be expressed as

x̄(t) = <
{
x(t)ej2πfct

}
,

where x(t) =
∑M−1
m=0 xme

j2πfmtp(t), fc is the carrier fre-
quency, M is the number of sub-carriers, xm is the data mod-
ulated onto the m-th subcarrier; and fm = m∆f is the m-
th subcarrier frequency, where ∆f is the sub-carrier spac-
ing. A low-pass pulse shape p(t) over the interval t ∈ [0, T ],
where T = 1

∆f is the symbol duration, is employed to shape
the transmitted signal. The passband time-varying channel
impulse response for underwater acoustic communication is
modeled as multi-scale multi-lag (MSML) channel,

h̄(t, τ) =

P∑
p=1

h̄pδ(τ − [τp − apt]),

where P indicates the number of paths in the channel, and
h̄p, τp, and ap are channel gains, delays, and Doppler scale,
respectively. All of these parameters are real-valued. The
delay and scale values are assumed to lie in a finite range τp ∈
[0, τmax] and ap ∈ [−amax, amax], where τmax denotes the
delay spread of the channel and amin is the maximum Doppler
scale. The bandpass received signal after passing through a
linear time-varying channel can be written as,

ȳ(t) =

+∞∫
−∞

h̄(t, τ)x̄(t− τ)dτ + z̄(t),

where z̄(t) is the bandpass additive, Gaussian noise. There-
fore, we have ȳ(t) =

∑P
p=1 h̄px̄ ([1 + ap]t− τp) + z̄(t).

If we consider that ȳ(t) = <
{
y(t)ej2πfct

}
and z̄(t) =

<
{
z(t)ej2πfct

}
. Then, we can express the baseband system

model as,

y(t) =

P∑
p=1

hpx ([1 + ap]t− τp) + z(t). (1)

where hp = h̄pe
−j2πfcτp . Then, chip-matched filtering the

received training signal (1) yields

y[n] =

P∑
p=1

hpxp [n−mp] + z[n], (2)

where xp[n] = x ((1 + ap)Tsn) and mp =
τp

(1+ap)Ts
. We

assume that Ts is sufficiently small such that the delays mp

are approximately integer values.

3. LINEAR APPROXIMATION OF MSML CHANNEL
Herein, we design an algorithm to track the channel behav-
ior at the receiver using the transmitted training signal in each
transmission interval, as depicted in Fig. 1. As is clear from
Fig. 1, we have two sets of unknown coefficients, i.e., α and
g. The vector g models the channel gains, the vector α mod-
els the Doppler scale parameters, and the length of filter, L,
is equal to the maximum discrete channel delay spread. Thus
L is the length of the filter, whereas the number of paths in
the channel is P and L � P due to the sparse nature of the
channel. To estimate variables α and g, we minimize the

x[n]
z−1 . . . z−1

g0 g1 gL−2 gL−1

1 + α0 1 + α1 1 + αL−2 1 + αL−1

ŷ[n]

Fig. 1. Multi-scale multi-lag tracking filter schematic

mean-squared error between the received signal y[n] and its
reconstruction, ŷ[n], in Fig. 1, namely

MSE =

N−1∑
n=0

|y[n]− ŷ[n]|2

N
=

N−1∑
n=0

|Y [k]− Ŷ [k]|2

N2
, (3)

where Y [k] and Ŷ [k] denote the N -point discrete Fourier
transform (DFT) of y[n] and ŷ[n], respectively. The equality
in Eq. (3) holds due to Parseval’s identity. Therefore, we
minimize the MSE by minimizing the distance between the
DFT of the received signal and our reconstructed signal. For
the reconstructed signal we have,

ŷ[n] =

L−1∑
l=0

glxl[n− l], (4)

where xl[n] denotes the discretized scaled signal, i.e., xl[n] =
x (nTs(1 + αl)). The N -point DFT of ŷ[n] in (4) is com-
puted as Ŷ [k] =

∑L−1
l=0 glXl[k]e−j

2π
N kl, where Xl[k] de-

notes the N -point DFT of xl[n]. Thus, to compute Ŷ [k],
we need to compute Xl[k]. The xl[n] can be written as,
xl[n] =

∑M−1
m=0 xme

j2πfm(1+αl)nTspl[n], where pl[n] =
p ((1 + αl)nTs). We know that the DFT of a signal is
the sampled version of its discrete time Fourier transform
(DTFT). Thus we first compute the DTFT of signal xl[n] and
then perform sampling on the DTFT to compute the DFT of
xl[n]. The DTFT of xl[n] is as follows,

Xl(ω) =

M−1∑
m=0

xmPl (ω − 2πfmTs(1 + αl)) .

In addition, from the scaling property of the Fourier transform
(if Ts is small enough to avoid aliasing), we have Pl(ω) =

P
(

ω
1+αl

)
. Therefore,

Xl(ω) =

M−1∑
m=0

xmP

(
ω

1 + αl
− 2πfmTs

)
. (5)

Note that fmTs = (fmin +m∆f) 1
M∆f = fmin

M∆f + m
M . For

simplicity, assume that fmin = m0∆f , where m0 ∈ N.
Therefore, we have fmTs = m0+m

M . Considering the fact that
in underwater acoustic channel Doppler scales are small, i.e.,
αl � 1, then we can approximate 1

1+αl
≈ 1− αl, yielding

Xl(ω) '
M−1∑
m=0

xmP

(
(1− αl)ω − 2π

m0 +m

M

)
.

Since the pulse shaping window is a low-pass signal in our
design, to simplify the mathematical analysis, we consider
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the linear approximation to its Fourier transform. We seek
the linear approximation of P (ω) inside the interval [0, 2π]
using Ml points as

P (ω) ' Pi(ω) for ω ∈ Ii =

[
2π

Ml
i,

2π

Ml
(i+ 1)

)
, (6)

and Pi(ω) = ciω + bi for i = 0, 1, . . . ,Ml − 1. Here ci and
bi for i = 1, . . . ,Ml are the complex numbers that minimize
the following mean-square error

eMl
=

Ml−1∑
i=0

∫
Ii
|P (ω)− Pi(ω)|2 dω

To determine the ci and bi that minimize the value of IM , we
set the first order derivatives equal to zero and control the sign
of the second derivatives. Hence, we obtain

∂eMl

∂Re(ci)
+ j

∂eMl

∂Im(ci)
= 2

∫
Ii

[Pi(ω)− P (ω)]ωdω = 0

∂eMl

∂Re(bi)
+ j

∂eMl

∂Im(bi)
= 2

∫
Ii

[Pi(ω)− P (ω)] dω = 0

Let us define µik :=
∫
Ii ω

kP (ω)dω. Then, using the equa-
tions above, we obtain ci and bi, for i = 0, . . . ,Ml − 1, as

ci =
3

2

(
Ml

π

)3 [
µi1 −

2πµi0
Ml

(
i+

1

2

)]
, (7)

bi =
Ml

2π

[
µi0 −

(
Ml

2π

)2(
i+

1

2

)
ci

]
. (8)

Now, if we substitute the values of bi and ci from Eqs. (7)
and (8) in Eq. (6), and then substitute the result in Eq. (5), we
have

Xl(ω) ≈
M−1∑
m=0

(
ω(1 + αl)−

2π(m+m0)

M

)
xmci + xmbi,

such that ω ∈ 2π(1 + αl)
[
i
Ml

+ m+m0

M , i+1
Ml

+ m+m0

M

)
. If

we approximate theXl(ω) byMd-point DFT and 1+αl ≈ 1,
we have

Xl[k] ≈
M−1∑
m=0

2πxmci

(
k(1− αl)
Md

− m+m0

M

)
+ xmbi,

such that k ∈ Md

[
i
Ml

+ m+m0

M , i+1
Ml

+ m+m0

M

)
. Replacing

i with i−mMl

M = i−mq in the above equation, we have
Xl[k] = v[k]αl + u[k], (9)

where v[k] = −2π
Md

(∑M−1
m=0 xmai−mq

)
k and

u[k] =

M−1∑
m=0

(
bi−mq + 2π

(
k

Md
− m+m0

M

)
ci−mq

)
xm,

for k ∈ Md

[
i
Ml

+ m0

M , i+1
Ml

+ m0

M

)
. Therefore, we find the

linear relationship between the Doppler scales and Fourier
transform of the scaled signal in each branch in Fig. 1. In
the next section, we design an algorithm to compute the fil-
ter coefficients g = [g0, g1, . . . , gL−1] and Doppler scales
α = [α1, α2, . . . , αL−1] using the received data to minimize
the MSE in Eq. (3).

4. COMPUTING UNKNOWN COEFFICIENTS

We know that in underwater acoustic communication chan-
nel, there are only a small number of dominant paths between
the transmitter and the receiver; and the channel gains de-
crease exponentially by increasing the channel delay. There-
fore, for proper sampling resolution, we expect that the num-
ber of active (non-zero) coefficients in g be a small number,
i.e., P � L, meaning that vector g is a sparse vector. There-
fore to update the filter coefficients we propose the target op-
timization problem

argmin
α,g

J (α,g) = argmin
α,g

Lα,g(Y, Ŷ ) + λΩ(g) (10)

where Lα,g(R, R̂) controls the closeness to the measure-
ments, Ω(g) regularizes our prior knowledge about the chan-
nel structure, such as the sparsity of g; λ is the Lagrange
multiplier that trades off between sparsity and proximity
to the measurements. We model the noise as additive and
Gaussian, thus the proper choice for our loss function is

Lα,g(R, R̂) =

N−1∑
k=0

(
Y [k]− Ŷ [k]

)2

;

to promote sparsity, we consider the convex l1-norm as the
regularizer (see e.g. [?]). Therefore, the objective function
for the optimization problem in (10) can be written as

J (α,g) :=

N−1∑
k=0

(
Y [k]− Ŷ [k]

)2

+ λ‖g‖1. (11)

Since ŷ[n] =
∑L
l=0 glxl[n − l], by taking the Fourier trans-

form and using Eq. (9), we have

Ŷ [k] =

L∑
l=0

gl (vl[k]αl + ul[k]) (12)

where vl[k] = v[k]e−j
2π
N kl and ul[k] = u[k]e−j

2π
N kl. If we

substitute Ŷ [k] from Eq. (12) into Eq. (11), we have

J (α,g) =

N−1∑
k=0

(
Y [k]−

L∑
l=0

gl (vl[k]αl + ul[k])

)2

+ λ‖g‖1.

Let us define auxiliary variable α′l = glαl. Then, we can
rewrite the above equation as

J (α,g) = ‖y − (Vα′ + Ug)‖22 + λ‖g‖1 (13)

where y = [Y [0], Y [1], . . . , Y [N − 1]]
T , V ∈ CN×L and

V[i, j] = vj [i], and U ∈ CN×L and U[i, j] = uj [i]. As
seen in Eq. (13), the objective function J (α,g) is a convex
function of design variables, [α,g]. Thus there exists an op-
timal solution for the problem in Eq. (10). Therefore, first
we derive the optimal solution for α′ given that g is known.
Then we substitute this value in (13) and compute the optimal
solution for g. It is clear that the optimal solution of α′ is the
least-squares solution of objective function in Eq. (13) and
can be written as,

α′ = V+ (y −Ug) (14)

where V+ =
(
VHV+

)−1
VH is the pseudo-inverse of ma-

trix V. Now if we define Vh = I − VV+, then we can
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rewrite (13) as
J (g) = ‖Vh (y −Ug)‖22 + λ‖g‖1. (15)

Since the objective function J (g) in (15) is a l1 regularization
problem, we can apply the alternating direction method of
multipliers [?] to solve this optimization problem as follows.
For the optimization problem in (15), ADMM consists of the
following iterations,

wn+1 =
(
UT V̄hU + ρI

)−1 (
UT V̄hy + ρgn − θn

)
,

gn+1[i] =

(
(wn+1 +

1

ρ
θn)[i]− λ

)
+

for i = 0, . . . , L− 1

θn+1 = θn + ρ
(
wn+1 − gn+1

)
,

where w is an auxiliary variable, V̄h = VT
hVh, the con-

stant ρ > 0 is the augmented Lagrangian parameter, θ is
the dual variable, index n indicates the iteration number, and
(x)+ = max(0, x). Note that in the w update step, the ma-
trix

(
UT V̄hU + ρI

)−1
is known at the receiver and does not

change in each iteration, thus it will be computed only once in
the system design. Therefore, in each iteration, only a single
matrix-vector multiplication is performed to update vector w,
which requires L2 +L flops. To update the vector g a simple
scalar thresholding (comparison) is fulfilled, which requires
L flops, and finally the dual variables are updated by a simple
summation operation in L flops. After computing the channel
gains, g, using the ADMM algorithm, we substitute the eval-
uated g into Eq. (14) to compute the Doppler scale parame-
ters α′ using a matrix-vector multiplication operation, which
requires LN flops. Therefore, in total

[
(L2 + 3L)It + LN

]
flops are required to compile the overall algorithm, where It
is the number of ADMM algorithm iterations, L is the length
of tracking filter, and N is the number of measurements.

5. NUMERICAL RESULTS
We simulate the performance of our proposed method in
terms of normalized mean square error (NMSE), i.e., NMSE =
E
{
‖ν − ν̂‖22/‖ν‖22

}
, where ν is the true value and ν̂ is the

estimated value. We consider OFDM signaling for an UWA
communication system with a minimum subcarrier frequency
fc = 10 kHz and subcarrier spacing ∆f = 10 Hz. The
sampling frequency is considered as fs = 1

Ts
= 39 kHz.

Furthermore, L = 50 × P is considered where P ≤ 10,
N = 2M − 1, and Md = Ml = M in all simulations. Fur-
thermore, the OFDM pulse shape, p(t) is a rectangular pulse
with T = 1

∆f . In Fig. 2, we examine the accuracy of our
proposed approximation in Section 3. Thus, we consider that
all the parameters (hp, ap, τp) for p = 1, . . . , P , are known.
Then, we compute the approximation error ‖y − ŷ‖2. It
is clear from Eq. (4) to (9) that two key parameters in the
approximation error are the number of subcarriers, M , and
value of Doppler scale parameters, amax. Results in Fig. 2
indicate that by increasing the total number of subcarriers
and the maximum Doppler scale, the approximation accuracy
decreases. However, for a total number of subcarriers less
than M = 128, our approximation results in an NMSE less
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Fig. 3. MSML channel estimation

than 0.1 for amax ≤ 10−3. Furthermore, for M ≤ 1024
and amax ≤ 5 × 10−4, the NMSE is less than 0.1. Thus for
systems designed within these ranges, our proposed method
offers strong performance

In Fig. 3, we compare the performance our method pro-
posed herein with our previously designed Structured-Prony
method [5]. We have that M = 512, amax = 10−4, and
It = 3. We see that the Structured-Prony method offers a
1 dB improvement over the current method for SNRs less
than 10. However, this performance gain comes at the cost
of complexity. The Structured-Prony method [6], which
is relatively low complexity algorithm among subspace
methods (e.g. [9]), requires almost

(
LN2 + L3 + 2

)
It +

(PM)3 + PM log(PM) flops versus that of the current
method (

[
(L2 + 3L)It + LN

]
). In Fig. 3, we also examine

the impact of enforcing sparsity on the quality of channel
estimation. For the case where include the sparse structure
of channel we have λ > 0; we can ignore such sparsity by
setting λ = 0 in the optimization problem in Eq. (13). We
see in Fig. 3 that there is about a 5 dB improvement in NMSE
for SNR values less than 15 dB by considering the channel
sparse structure.

6. CONCLUSIONS

In this paper, we have introduced a new, very low complex-
ity channel estimation strategy for MSML channels. In par-
ticular, we show that one can well-approximate the received
signal in the Fourier domain under the assumption of a train-
ing signal. In particular, the nonlinear effects of the multi-
ple Doppler scales, can be linearized due to the assumption
of small absolute scales. We additionally exploit the inher-
ent sparsity of underwater acoustic channels to enhance the
quality of channel estimation. The proposed method offers
performance only slight worse than that of a previously pro-
posed scheme but with complexity that is squared with the
filter length versus cubed with the filter length. While we
have focused on OFDM signaling, the proposed method can
be extended to a broader class of signals, e.g., Gabor frames.
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