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ABSTRACT

We examine the design of self-organizing mobile adaptive net-
works with multiple targets in which the network nodes form dis-
tinct clusters to learn about and purse multiple targets, all while
moving in a cohesive collision-free manner. We build upon pre-
vious distributed diffusion-based adaptive learning networks that
focused on a single target to examine the case with multiple tar-
gets in which the nodes do not know the number of targets, and
exchange local information with their neighbors in their learning
objectives. In particular, we design a method allowing the nodes to
switch the target they are tracking thereby engendering the forma-
tion of distinct stable learning groups that can split up and purse
their distinct targets over time. We provide analytical mean sta-
bility and steady state mean-square deviation results along with
simulations that demonstrate the efficacy of the proposed method.

Index terms— adaptive networks, diffusion adaptation, self-
organization, distributed signal processing, mobility

1. INTRODUCTION

Signal processing research has increasingly focused on the prob-
lems associated with networks of nodes sensing and learning about
an environment, and engaging in collective decision making, all in
a distributed manner. This thrust has stemmed from a desire to un-
derstand the natural world, and to engineer autonomous systems.
In particular, researchers want to understand the swarm intelli-
gence inherent in the natural world, such as schools of fish finding
food sources [1], birds flocking [2], and honey bees finding a new
home [3]. In addition, engineers have attempted to design mobile
networks of autonomous agents without global control that can
collectively complete tasks in complex environments. Some ap-
proaches have relied upon consensus algorithms to achieve agree-
ment among nodes [4], [5], [6], while others have pursued the dif-
fusion approach based on adaptive filtering principles [7], [8], [9].

In [7], the authors proposed mobile adaptive networks that can
pursue a single target. In particular, the nodes exchange limited in-
formation with their neighbors, and use distributed adaptive learn-
ing to collectively learn and move towards the target location while
avoiding collision among the nodes. In [8], in a two target net-
work, nodes agree on one common target through a collaborative
decision making process involving the inner products between a
node’s update vector for its target estimate with its neighbors’ up-
date vectors, assuming that the targets have a greater than π

2
sep-

aration. The nodes only move after an agreement is reached. In
[9],N non-mobile network nodes learn T objectives with T < N ,
down-weighting and subsequently cutting their network connec-
tions to emphasize neighbors with the same learning objectives.

While providing valuable insight, these papers have not examined
the problem of mobile adaptive networks with multiple targets.

In this paper, we focus on designing mobile adaptive networks
with N nodes and T static targets in which the nodes collectively
form distinct clusters to learn about and pursue distinct targets, all
while moving. In particular, we assume that each node is initially
assigned a random target, and that the nodes do not know the total
number of targets in their environment. Similar to [7], each node
exchanges information with its neighbors. However, the nodes do
not know which target their neighbors are sensing, and in fact,
there is no mechanism for naming or numbering the targets. We
design a method for allowing each node to switch its sensing direc-
tion based on local information, thereby allowing a node to pursue
a different target. In addition, we focus our design on reducing
the number of switches a node makes to engender the formation of
stable network groups that can split to learn about and pursue their
distinct targets. We provide a performance analysis and simulation
results that demonstrate the efficacy of our algorithm.

The remaining sections are as follows. In Section 2, we review
mobile adaptive network diffusion. In Section 3, we formulate the
target switching mechanism. In Section 5, we derive the algorithm
mean stability and steady state mean-square deviation. Simulation
results are illustrated in Section 6 and Section 7 concludes.

2. MOBILE ADAPTIVE NETWORK

Consider a collection of N mobile nodes and T static targets ran-
domly distributed over a plane. Node k tracks the target located
atwon(k) where n(k) ∈ {1, 2, ....T} in a global coordinate system.
Each node initially tracks a random target. Assume the network
has no isolated nodes. Each node k finds its neighbors within a
range R radius in each time i. Let Nk be the set of neighbors of
node k and nk = |Nk| and constrained to nk ≤ nmax. At time
i, node k is located at xk,i and it estimates its distance, dk(i), to
won(k) [7]

dok(i) = uok,i(w
o
n(k) − xk,i) (1)

where o denotes the optimal or true value. uok,i is the unit sensing
direction row vector pointing to won(k). The objective of the net-
work is to estimate won(k) for all k ∈ {1, 2, ...N} by minimizing

Jglob(wn(1), ...wn(N)) =
N∑
k=1

E|dk(i)− uk,i(wn(k) − xk,i)|2.

(2)
Each node k exchanges the measurement data {uk,i, xk,i} with its
neighbors and solves (2) distributively as in [7]. In particular, each
node k computes,

ψk,i = wk,i−1 + µk
∑
l∈Nk

bwl,k(qk,i − wk,i−1) (3)

3217978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



wk,i =
∑
l∈Nk

awl,kψl,i (4)

where µk is the learning step size and bwl,k and awl,k are the non-
negative coefficients. ψk,i and wk,i are node k’s intermediate and
local estimates of won(k). Note that qk,i = xk,i + dk(i)uTk,i is the
noisy measurement of the location of won(k) at time i. From (4), if
node k’s neighbors are tracking different targets (wn(l) 6= wn(k))
l ∈ Nk, then wk,i will converge to a linear combination of the
different targets. As in [9], we need to set the combination weights
awl,k to emphasize the estimates of the neighbors that are learning
about the same target. Therefore, in (3) and (4), we set bwl,k = δlk
in terms of the Kronecker delta function and design awl,k as,

awl,k(i) =
‖wk,i−1 − ψl,i‖−2∑

n∈Nk
‖wk,i−1 − ψn,i‖−2

(5)

awl,k(i) ≥ 0,
∑
l∈Nk

awl,k(i) = 1, awl,k(i) = 0 if l /∈ Nk.

Node k updates its location as xk,i = xk,i−1 + ∆tvk,i. For co-
herent collision-free group motion, each node calculates vk,i [7],

(6)
vk,i = λ

wk,i−1 − xk,i−1

‖wk,i−1 − xk,i−1‖
+ βvgk,i−1

+ γ
∑

l∈Nk\{k}

(‖xl,i − xk,i‖−r)
xl,i − xk,i
‖xl,i − xk,i‖

where λ, β and γ are non-negative velocity update coefficients.
The first term in (6) is node k’s direction vector towon(k). Note that
vgk,i is node k’s estimate of the group velocity which is designed
to allow for coherent motion. The last term in (6) is a combination
of the internal attractive and repulsive forces between neighboring
nodes, while r is the minimum distance between two nodes. Each
node estimates vgk,i distributively as in [7],

Φk,i = vgk,i−1 + νk(vk,i − vgk,i−1) (7)

vgk,i =
∑
l∈Nk

avl,kΦl,i (8)

where νk is a step size and avl,k is a non-negative weight.

3. TARGET SWITCHING MECHANISM

To design a mobile adaptive network that pursues multiple targets
that are not necessarily separated by an angle of π

2
, we need to

develop methods for nodes to detect that they are not aligned with
their neighbors’ learning objectives, and to subsequently switch
their sensing direction and therefore the target they are pursuing.
Moreover, we need to ensure that the nodes can split into stable
subgroups that can pursue distinct targets. To begin with, we look
at the iterative local cost of node k as in [10],

(9)J loc(wk,i−1) = E|qk,i − wk,i−1|2

= E|won(k) + νk,ik,i − wk,i−1|2

where from [7], qk,i = won(k) + νk,i. Let νk,i be a zero mean
white random vector with variance proportional to the distance be-
tween xk,i and won(k)as in [7]

(10)σ2
νk,i = κ‖won(k) − xk,i‖2

= κ‖won(k) − xk,i−1 −∆tvk,i‖2.

Eq. (9) contains the learning error E‖won(k) − wk,i−1‖2 and the
measurement error σ2

νk,i
. Both errors are expected to decrease as

node k gets closer to its target [7]. In (6), if vk,i is dominated by a
vgk,i that is different from node k’s sensing direction, then xk,i will
not reach won(k). Then σ2

νk,i
is non-decreasing as i→∞, and

J loc(wk,i) ≥ J loc(wk,i−1). (11)

Since in this case node k will never reach its target won(k), then
node k needs to switch its target to become aligned with its neigh-
bors that are pursuing a different target. How can we detect this
condition while being conservative in switching to avoid nodes
rapidly switching their sensing direction? We focus on the an-
gle between node k’s sensing direction uk,i , and its velocity vk,i,
detecting the persistent increase in this angle. We use ck(i), the
cosine of the angle between uk,i and vk,i due to its low computa-
tional cost and the value limited range of [−1, 1]. Note that

ck(i) =
uk,ivk,i
‖vk,i‖

, (12)

and ck(i) can be smoothed through a first-order filter,

ck(i) = ck(i− 1) + µc[
uk,i.vk,i
‖vk,i‖

− ck(i− 1)]. (13)

When ck(i) is decreasing, the node is moving in a different direc-
tion from its target and the local cost becomes a non-decreasing
function. The higher the value of ck(i), the more confidence the
node has that it is moving towards won(k). Therefore, node k de-
cides to get a new sensing direction vector unewk,i if ck(i) ≤ η.
When switching to a new target, we want to minimize the direc-
tion difference between unewk,i and vk,i, i.e.,

min
(unew

k,i
)T
‖(unewk,i )T − vk,i‖. (14)

From (6), (7) and (8), we have

vgk,i ≈
∑
l∈Nk

avl,k
wl,i−1 − xl,i−1

‖wl,i−1 − xl,i−1‖
≈

∑
l∈Nk

avl,k u
T
l,i, (15)

∑
l∈Nk

avl,kγ
∑

l∈Nk\{k}

(‖xl,i − xk,i‖−r)
xl,i − xk,i
‖xl,i − xk,i‖

≈ 0

Assuming vgk,i ≈ v
g
k,i−1, from (6) and (15) we solve (14),

unewk,i =
∑

l∈Nk\{k}

sl,kul,i (16)

where sl,k is a non-negative coefficient. Node k sets wk,i = 0
when it gets the new sensing direction. In target switching, node k
uses the new sensing direction unewk,i to find a new target wn(k)

within the angle θ. As in [7] and [8], we ignore occlusion.
The change in the sensing direction is restricted to cases when
dk(i) > ε. This requirement is needed because when the nodes
are very close to a target (or targets), the value of ck(i) can rapidly
change due to the changes in vk,i in (6) (e.g., node repulsive force
for collision avoidance).

Now let us consider how to design the weights sl,k that deter-
mine the new sensing direction unewk,i . Node k needs to emphasize
the sensing directions ul,i for l ∈ Nk that are aligned with the
group velocity, i.e.,

min
sl,k(i)

‖
∑

l∈Nk\{k}

sl,k(i)uTl,i − vgk,i‖ (17)

sl,k(i) ≥ 0,
∑

l∈Nk\{k}

sl,k(i) = 1 sl,k(i) = 0 for l /∈ Nk.

3218



We get the solution for sl,k using [11],

sl,k(i) =
‖uTl,i − vgk,i‖

−1∑
n∈Nk\{k}

‖uTn,i − v
g
k,i‖−1

, (18)

with more weight to nodes l ∈ Nk whose sensing direction ul,i, is
closer to vgk,i. If sl,k(i) < ζ, we set sl,k(i) = 0 to de-emphasize
the neighbors that have a different sensing direction.

4. PERFORMANCE ANALYSIS

Let us assume that each node’s final target
zn(k) ∈ {w1, w2, ..., wT } is known. Let woni(k) be the loca-
tion of the target that node k tracking at time i. We introduce two
error vectors at node k as in [8],

w̃k,i = zon(k) − wk,i z̃ok,i = zon(k) − woni(k) (19)

where w̃k,i is node k’s estimation error to its final target and z̃ok,i
is the error difference between node k’s final and current targets at
time i. The error recursion for estimation in (3) and (4) is

(20)

w̃k,i =
∑
l∈Nk

awl,k(i)(1− µk)w̃l,i−1 +
∑
l∈Nk

awl,k(i)µkz̃
o
l,i

−
∑
l∈Nk

awl,k(i)µkνl,i + zon(k) −
∑
l∈Nk

awl,k(i)zon(l).

Then, we can write the above recursion in the state space form as

w̃i = ATi (INM −M)w̃i−1 +ATiMz̃i −ATiMgi + bi (21)

where the block vectors and matrices are defined as,
w̃i = col{w̃1,i, w̃2,i, ...., w̃N,i}
z̃i = col{z̃o1,i, z̃o2,i, ...., z̃oN,i}
M = diag{µ1IM , µ1IM , ...., µNIM}
gi = col{ν1,i,ν2,i, ....,νN,i}
bi = col{b1,i, b1,i, ...., bN,i}
where bk,i = zon(k) −

∑
l∈Nk

awlk(i)zon(l)

Ai = Ai ⊗ IM
Where Ai is N ×N matrix with individual non-negative real en-
tries {al,k} and ⊗ is the Kronecker product of two matrices.

4.1. Mean Stability

Taking the expectation of both side of (21),

E[w̃i] = ATi (INM −M)E[w̃i−1] +ATiMz̃i + bi. (22)

Since we assume static targets, E[z̃i] = z̃i and E[gi] = 0. Let
Bi = ATi (INM − M). We need the following conditions for
the mean convergence in (22),

‖Bi‖1< 1 and ATiMz̃i + bi = 0 (23)

where ‖.‖1 is the L1 norm of a matrix. Since Ai is a left
stochastic matrix, we can write the first condition in (23) as
|1− µk|< 1. Then we can select the step size of 0 < µk < 2
for all k. The second term in (23) (ATiMz̃i + bi) becomes
zero when nodes form distinct groups pursuing particular tar-
gets (zon(k) = zon(l) for all l ∈ Nk), then z̃i = 0. Then (22) con-
verges. However, if node k has neighbors that have different tar-
gets (zon(k) 6= zon(l) for l ∈ Nk), then node k’s estimate will con-
verge to a convex combination of target locations [8],

wk,i =
∑
l∈Nk

awl,k(i)zon(l) as i→∞. (24)

Algorithm 1 Mobile Adaptive Network with Target Switching
Assign a random target to each node, won−1(k) where
nk ∈ {1, 2, ...T} and initialize wk,−1 = 0, and ck,−1 = 1 for
all k.
for i ≥ 0 and k = 1 to N do

1) Each node has the local data {dk(i), uk,i, vk,i, xk,i}.
2) Find the neighbors Nk within R and |Nk|≤ nmax
3) Exchange {uk,i, vk,i, xk,i} with node l where l ∈ Nk
4) Find the noisy location of target, qk,i = xk,i + dk(i)uTk,i
5) Perform the local adaptation steps,

ψk,i = wk,i−1 + µk(qk,i − wk,i−1)

Φk,i = vgk,i−1 + νk(vk,i − vgk,i−1)

6) Exchange {ψk,i,Φk,i} with node l where l ∈ Nk
7)
if (‖wk,i−1 − ψl,i‖< δ) then

awl,k(i) =
(‖wk,i−1 − ψl,i‖)−2∑

n∈Nk
(‖wk,i−1 − ψn,i‖)−2

end if
8) Perform the combination steps,

wk,i =
∑
l∈Nk

awl,k(i)ψl,i

vgk,i =
∑
l∈Nk

avl,kΦl,i

9) Find the node velocity,

vk,i+1 = λ
wk,i − xk,i
‖wk,i − xk,i‖

+ βvgk,i

+ γ
∑

l∈Nk\{k}

(‖xl,i − xk,i‖−r)
xl,i − xk,i
‖xl,i − xk,i‖

.

10)
if dk(i) > ε then

ck(i) = ck(i− 1) + µc[
uk,ivk,i
‖vgk,i‖

− ck(i− 1)]

if ck(i) ≤ η then
i) Compute the weighting combiner

sl,k(i) =
‖uTl,i − vgk,i‖

−1∑
n∈Nk\{k}

‖uTn,i − v
g
k,i‖−1

if sl,k(i) < ζ, set sl,k(i) = 0.
ii) Find the new sensing direction,

unewk,i =
∑

l∈Nk\{k}

sl,k(i)ul,i

Set wk,i = 0 and ck(i) = 1.
end if

end if
11) Update the node location, xk,i+1 = xk,i + ∆t vk,i+1

end for

4.2. Mean Square Performance

Let Σi be anNM xNM positive semi-definite Hermitian matrix.
Using the energy conservation arguments in [10], the weighted
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norm of w̃i can be obtained as,

E‖w̃i‖2Σi
= E‖w̃i−1‖2Σi−1

+Tr(YiΣi) (25)

where, Σi−1 = B∗i ΣiBi
Bi = ATi (I −M)
Z = E[z̃iz̃

∗
i ]

G = E[gig
∗
i ]

Yi = BiEw̃i−1b
∗
i +ATiMZMAi +ATiMz̃ib

∗
i

−ATiMGMAi + bi(Ew̃i−1)∗B∗i + biz̃
∗
iMAi + bib

∗
i .

(26)

Since the recursion Σi−1 runs backwards, we can rewrite (25) as,

E‖w̃i‖2Σi
= E‖w̃−1‖2Σ−1

+

i∑
j=0

Tr(YjΣj) (27)

where,
Σj = B∗j+1B∗j+2...B∗i ΣiBi..Bj+2Bj+1 for −1 ≤ j ≤ i− 1.
From [12] and [9], we can write,

‖Σj‖∗≤ c2[1− µk]2(i−j).‖Σi‖∗ (28)

where ‖.‖∗ is the nuclear norm. For any Hermitian and pos-
itive definite matrix, the nuclear norm is equivalent to the
trace of the matrix. Since Yi in (26) is uniformly bounded,
ξ = sup

j≥0
‖Y1/2

j ‖
2
∗<∞ and from [9], we can conclude the error

recursion (21) is mean-square stable with,

lim
i→∞

E‖w̃i‖2Σi
=

c2ξ‖Σ∞‖∗
[1− (1− µ)2]

. (29)

Select Σ∞ = INM
N

and define the steady state mean-square devi-
ation of the network as

MSD = lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖22

≈ 1

N

N∑
j=0

Tr(Bi....Bj+1YiB∗j+1....B∗i ). (30)

5. SIMULATION RESULTS
We simulate the proposed algorithm over a 3 target network with
50 nodes shown in Figure 1. Each node is initially assigned a ran-
dom target. We select µk = νk = 0.05 for all k. (δ, α, β, γ, avl,k)
are set to (0.001, 0.5, 0.5, 1

nk−1
and 1

nk
). The distance threshold

for switching is set to ε = 7. The new sensing direction range θ is
45◦ and ζ = 0.1. Each node selects Nk within the radius R = 7
with nmax = 7. r = 2 and κ = 0.01. The nodes apply Algorithm
1 with the value of η = −0.75. The simulation results are shown
in Figure 1. In Figure 1 (c), the network has split into 3 subgroups
through target switching, with each subgroup pursuing a different
target. In Figure 1 (d), the nodes reach their targets. We tested the
proposed algorithm over other scenarios with different target con-
figurations and numbers of targets and observed similar network
convergence. Due to space limitations, we cannot illustrate those
results here. In Figure 2, we plot the network MSD using the tra-
ditional ATC diffusion algorithm [7] with no switching along with
the results using Algorithm 1 with different η values . These re-
sults are averaged over 10 experiments with the same initial state
of wk,−1 for all k. With different η values, the network forms dif-
ferent subgroups. When the value of η is higher (i.e., η = 0), the
network converges quickly but the nodes have multiple switches
between targets. The nodes reduce their numbers of switches with

(a) (b)

(c) (d)
Figure 1: Mobile network maneuvers with 3 targets for iteration i
(a) i = 0 (b) i = 100 (c) i = 200 (d) i = 300

lower η values (i.e., η = −0.5 and η = −0.75). Also in Figure 2,
we see that the empirical MSD results closely match the analytical
MSD results from Eq. (30) in steady state.

Figure 2: Comparison of network transient MSD from simulations
along with the theoretical steady-state MSD from (30). The tran-
sient MSD is illustrated for the case of no target switching along
with 3 cases of target switching for different η values.

6. CONCLUSION

We designed self-organizing mobile adaptive networks based on
adaptive diffusion learning that can pursue multiple targets through
the formation of distinct clusters of nodes that focus on distinct tar-
gets. Simulation results demonstrate the efficacy of the algorithm
while the performance analysis focused on the steady-state mean
stability and mean-square deviation. Future work will focus on the
dynamics of cluster formation.
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