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ABSTRACT
We consider a cooperative cognitive wireless network sce-

nario where a primary wireless network is co-located with a
cognitive (or secondary) network. In the considered scenario,
the nodes of the secondary network make local binary de-
cisions about the presence of a signal emitted by a primary
node. Then, they transmit their decisions to a fusion center
(FC). The final decision about the channel state is up to the
FC by means of a proper fusion rule.

In this scenario, we derive the optimum decision strategy
for the FC and the optimum local decision thresholds of the
secondary nodes in a Neyman-Pearson setup. In particular,
the overall system performance are derived by making the
realistic assumption that the position of the primary user is
completely unknown to the FC.

1. INTRODUCTION

With the development of wireless communications in the last
years, most of the available spectrum has fully been allo-
cated. On the other hand, recent investigations on the actual
spectrum utilization have shown that a portion of the licensed
spectrum is largely under utilized [1].

In this context, dynamic spectrum access (DSA) and cog-
nitive radio (CR) has the potential to become the solution to
the spectrum under utilization problem [2], [3], [4], [5]. One
of the main tasks of CR is represented by spectrum sensing
(SS), defined as the task of finding spectrum holes [6] i.e., por-
tions of spectrum allocated (licensed) to some primary users
but left unused for a certain time. In particular, collabora-
tion of multiple users in SS may highly improve the perfor-
mance of spectrum sensing by introducing a form of spatial
diversity [7], [8]. In cooperative SS, CR users first send the
collected data to a combining user or fusion center (FC). Al-
ternatively, each user may independently perform local deci-
sions, and then report binary decisions to the FC. Finally, the
FC takes a decision on the presence or absence of the licensed
signal based on the information received from the users.

In this paper, we consider a cooperative cognitive wire-
less network scenario where a primary wireless network is
co-located with a cognitive (or secondary) network. Any por-
tion of the spectrum, i.e. a subchannel, can be assigned freely

by the base station of the primary network to an active user
equipment (UE). The nodes of the secondary network, re-
ferred to as cognitive UE (C-UE), make local binary decisions
about the presence of a signal emitted by a primary node, de-
noted as P-UE. Then, they transmit a report with their deci-
sions to the FC. The final decision about the channel state is
up to the FC, through the adoption of a proper fusion rule.

The main goal of this paper is to derive the optimum de-
cision strategy for the FC and the optimum local decision
thresholds of the C-UE nodes in a Neyman-Pearson setup.
With respect to previous works, the contribution of our study
is twofold: (i) we derive the optimum fusion rule without as-
suming that the position of the P-UE is known. This marks a
major difference with respect to previous studies in which the
P-UE is assumed to be located at the center of the ROI (see
for example [9]); (ii) we derive a closed-form solution for the
optimum decision rule without resorting to any approxima-
tions (e.g, Gaussianity assumption) with regard to the suffi-
cient statistic used by the FC. The simulations we carried out
show that the ignorance of P-UE location has a non-negligible
impact on the achievable performance, thus confirming the
importance of our study.

The rest of the paper is organized as follows. Section 2
introduces the setup analyzed in our study. Section 3 outlines
the overall approach that we adopt for our analysis. In Section
4 we present the optimal fusion rule and derive the overall
system performance analytically. Section 5 shows simulation
results and discusses them. Finally, Section 6 presents our
conclusions.

2. THE SETUP

In the setup considered in this paper, both primary and sec-
ondary nodes are deployed in a circle of radius R, hereafter
referred to as region of interest (ROI). The locations of nodes
are unknown to the FC, which, in turn, is assumed to be lo-
cated at the center of the ROI. Secondary and primary nodes
are independent and identically distributed (i.i.d.) within the
ROI according to a uniform distribution. We assume that
each subchannel is assigned to a P-UE with probability P (S1)
while it is inactive with probability P (S0) = 1 − P (S1). In
this setting, each C-UE scans all channels in order to detect
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the presence of a primary signal transmission. In particular,
the C-UEs perform a binary hypothesis test on the status of
each channel. The channels are idle under hypothesis S0 and
busy under hypothesis S1.

To be more specific, we assume that, upon channel sens-
ing, k secondary nodes produce k local decision variables
{w1, w2 . . . wk}. Each variable wq , q = 1, . . . , k, is a bi-
nary term, i.e., wq ∈ {0, 1}, representing the binary status
(idle or busy) of the sensed subchannel, estimated by the q-
th node. The secondary nodes transmit the observation vari-
ables {wq}kq=1 to the FC, which makes a final decision about
the status of each subchannel. We further assume that the re-
porting channel between C-UEs and the FC is not ideal, and
that it can be modeled as a BSC channel with common error
probability Pe.

3. METHODOLOGY

The overall approach that we will adopt for our derivations is
outlined in the following.

We start with the assumption that the nodes make their de-
cisions by comparing a decision variable (extracted from the
received signal) against a local threshold τN [10]. In this case,
the local false alarm probability (PFA) depends only on the
noise power at the C-UE receivers, and, as such, it can be eas-
ily calculated. As for the local missed detection probability
(PMD), it depends on the propagation conditions between the
transmitting and the receiving nodes, which, in turn, depend
on the positions of the nodes. We denote in the following
by Vc,q , q = 1 . . . k, and Vp, respectively, the position of the
secondary users and the primary user within the ROI.

Let now Wq and Zq be the random variables indicating,
respectively, the local decision made by the q-th node and the
corresponding report received by the fusion center (they may
differ due to the presence of transmission errors between the
C-UE and the FC). The optimum strategy of the FC is defined
by the Neyman-Pearson criterion and requires the evaluation
of the likelihood ratio between the probabilities of observing
the reports received from the nodes under the two hypothesis
S1 and S0, that is:

`(z1 . . . zk) = P (z1,z2...zk|S1)
P (z1,z2...zk|S0)

S1

≷
S0

λ. (1)

A problem with the computation of the above quantity
is that under Hypothesis S1 the rv’s Zq are not independent
since they jointly depend on the position of the primary user
Vp. To get around this problem, we observe that due to the
symmetry of the analyzed setup and to the lack of a-priori in-
formation about the position of the secondary users, the prob-
ability of the reports received by the FC is permutation invari-
ant, that is P (z1, z2 . . . zk|S1) = P (σ(z1, z2 . . . zk)|S1) for
any permutation σ. Then, it is easy to prove that `(z1 . . . zk)
depends only on the number of zeros (and ones) contained in

(z1 . . . zk), that is on

ztot =
k∑
q=1

zq, (2)

which, hence, is a sufficient statistic for the problem at
hand. Due to the nature of the problem, we also argue that
`(z1 . . . zk) is a monotonically increasing function of ztot,
hence permitting us to rewrite the optimal decision rule for
the FC as:

ztot
S1

≷
S0

T. (3)

To complete our analysis, we need to set the threshold T by
resorting again to the Neyman-Pearson criterion, i.e., by fix-
ing the desired overall false alarm probability (P (f)

FA). This
can be easily done, since the probability density function of
Ztot under S0 is easy to compute due to the independence
of the random variables Zq when the sensed channel is idle.
The computation of the missed detection probability, let us
call it P (f)

MD, is more involved due to the dependence of the
Zq’s under S1. To go on, we observe that, given Vp, Zq’s
are conditionally independent and identically distributed ac-
cording to a Bernoulli distribution for which the probability
that Zq = 1 is computable starting from the error probability
characterizing the local decisions of the nodes and the error
probability of the BSC linking the C-UE and the FC. For this
reason P (Ztot|Vp) is a binomial distribution with known pa-
rameters, and P (ztot) can be derived as:

P (ztot) =
∫

ROI P (ztot|vp)f(vp)dvp. (4)

To conclude, we observe that, for a given τN and a desired
P

(f)
FA we have a given T , and, hence, a given P (f)

MD. Accord-
ingly, we can then optimize the overall system by choosing
τN in such a way to minimize P (f)

MD. In the following sec-
tions, all the steps outlined above are applied to the particular
setup described in Section 2.

4. OPTIMAL FUSION RULE

In order to derive the optimal fusion rule we start by ob-
serving that, in wireless scenarios, the path loss depends
on the distance between the transmitting and receiving an-
tenna/node. Accordingly, setting Vc = ye2πjθ and Vp =
xe2πjφ the generic positions of C-UEs and P-UEs within
the ROI, we have that the local missed detection prob-
ability is a function of, among other things, the distance
d =

√
x2 + y2 − 2xycos(θ − φ). Hence, assuming that the

ROI is characterized by a known statistical channel model,
it is possible to evaluate the average local missed detection
probability as a function of d, by averaging with respect to
fast and slow fading distributions (e.g., see [11], [12]). In
the following we denote by PMD,avg(d) the average missed
detection probability for a given d.
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Let now denote by P (zq|Sj) the pmf of observations zq
under hypothesis Sj , j = 0, 1. We can write the pmf terms
as:

P (zq|S1) = P (zq|wq = 1)P (wq = 1|S1)
+ P (zq|wq = 0)P (wq = 0|S1)

P (zq|S0) = P (zq|wq = 1)P (wq = 1|S0)
+ P (zq|wq = 0)P (wq = 0|S0)

(5)

where in the considered scenario we have:

P (wq = 1|S1) = (1− PMD,avg(dq))
P (wq = 1|S0) = PFA

(6)

dq being the distance between the q-th C-UE and the P-UE,
and P (zq|wq) = 1 − Pe if zq = wq and P (zq|wq) = Pe if
zq 6= wq .

In order to give an estimation of the final performance
we start by evaluating the average correct detection probabil-
ity for each sensor conditioned to the position of the primary
node Vp = xe2πjφ. We first observe that the assumption of a
uniform distribution in the ROI entails a constant joint pfd in
Cartesian coordinates. Hence, by passing from Cartesian to
polar coordinates, we get a uniform distribution for φ and a
linear distribution for x. Accordingly, owing to the symmetry
of the problem, we can consider φ = 0. Moreover, without
loss of generality, we assume R = 1 so that the generic P-UE
position in the ROI can be characterized by a random term
x with pdf fx(δ) = 2δ in the interval [0, 1]. Denote now by
d the distance between a generic C-UE node located at posi-
tion Vc and the P-UE. The distribution of d, denoted by fd(ρ),
can be derived by observing that for ρ < 1 − x the annulus
centered at Vc with inner radius ρ and outer radius ρ + dρ
is fully included into the unit circle, and, as such, we have
fd(ρ) = 2ρ, for ρ < 1− x. On the other hand, for ρ ≥ 1− x
only a portion of the annulus lies within the unit circle and in
this case fd(ρ) is given by such portion divided by the surface
of the unit circle. This situation is illustrated in Figures 1 and
2, where the abscissa x0 = 1−ρ2+y2

2y of the intersection points
of two circles centered in 0 and x and with radius 1 and ρ, re-
spectively, is shown. We also show the angle θ subtended by
half of the portion of circumference with radius ρ lying out-
side the unit circle, for the two possible cases x0 ≥ y (Fig. 1)
and x0 < y (Fig. 2). Note that θ is a function of ρ and x and
it has the same formal expression in both cases, i.e.:

θ(ρ, x) = cos−1
(

1−ρ2−x2

2ρx

)
. (7)

Hence, we have:

fd(ρ|x) = 2ρ for 0 ≤ ρ ≤ 1− x
fd(ρ|x) = 2ρ

[
1− 1

π θ(ρ, x)
]

for 1− x < ρ ≤ 1 + x
fd(ρ|x) = 0 for ρ > 1 + x

(8)
Let now denote by P̄CD(δ) the probability of correct detec-
tion of a generic node averaged over all possible distances d,

Fig. 1. Calculation of the portion of the annulus in the case
x0 ≥ y.

Fig. 2. Calculation of the portion of the annulus in the case
x0 < y.

for a given x = δ, we have:

P̄CD(δ) = 1−
∫
ρ

PMD,avg(ρ)fd(ρ|δ)dρ (9)

We are now able to derive the pmf of the observations zq un-
der hypothesis Sj , j = 0, 1 conditioned on x = δ as:

P (zq = 1|S1, δ) = P̄CD(δ)(1− Pe)
+ (1− P̄CD(δ))Pe
, P eqCD(δ),

(10)

on the other hand we have:

P (zq = 1|S0) = PFA(1− Pe) + (1− PFA)Pe = P eqFA.
(11)

Let us denote by P (f)
CD(δ) the final correct detection probabil-

ity conditioned to δ, which is the correct detection probability
achieved by fusing all the received reports. By remembering
the discussion we made in Section 3, we have:

P
(f)
CD(δ) =

k∑
q=T

(
k
q

)
(P eqCD(δ))q(1− P eqCD(δ))k−q. (12)

Eventually, from (4), we obtain the unconditioned correct de-
tection probability:

P
(f)
CD = 2

1∫
0

P
(f)
CD(δ)δdδ. (13)
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As for P (f)
FA, since in this case the local reports do not depend

on the position of the P-UE, we have:

P
(f)
FA =

k∑
q=T

(
k
q

)
(P eqFA)q(1− P eqFA)k−q. (14)

It is then possible to determine the system performance
for each given threshold pair (τN , T ). In particular, we intro-
duce the following functions to highlight the dependency of
P

(f)
CD and P (f)

FA on τN and T :

P
(f)
FA = F (τN , T )

P
(f)
CD = G (τN , T ) .

(15)

The threshold τN is evaluated by following a Neyman-
Pearson approach. To elaborate, denoting by P (tgt)

FA the de-
sired PFA, for each possible value of τN we determine the
threshold T ∗ which allows to achieve P (tgt)

FA , i.e.:

T ∗(τN ) : F (τN , T
∗) = P

(tgt)
FA . (16)

Hence, the optimal τN , denoted by τ∗N is selected as the value
which allows to achieve the minimal P (f)

CD, i.e.:

τ∗N = arg min
τN

G [τN , T
∗(τN )] . (17)

This is a nonconvex optimization problem, which is solved
by sampling τN and T at points uniformly taken over their
respective intervals.

5. SIMULATION RESULTS AND DISCUSSION

We have developed a MATLAB simulation environment
which allows to place all the involved nodes within the same
circular ROI following a uniform distribution. We have then
considered classical path-loss and fading models and we have
derived the final ROC curves for different parameters setting.
Such curves have been compared with the results obtained
through the analytical approach discussed in previous Sec-
tions. Such comparisons have shown a perfect matching
between the two approaches, thus confirming the validity
of the proposed analysis. Moreover, we have evaluated the
system performance for two distinct cases: (i) the position of
the primary user is unknown with uniform distribution in the
ROI. This case is denoted by Uniform P-UE, ; (ii) the primary
user is located at the center of the ROI, i.e., border effects are
neglected, as assumed in [9]. This case is denoted by Fixed
P-UE. A comparison between the two cases, obtained again
considering different parameters setting, has demonstrated
that the uncertainty in the position of the P-UE strongly af-
fects the system performance, and, as such, we cannot in
general neglect the border effects. This observation definitely
assesses the importance of our analysis.

As an example, in Fig. 3 we report the ROC curves ob-
tained for the two mentioned cases. In particular, we consider

τN = 1.5, R = 1000 m, a transmitting power from P-UEs of
150 mW, a path-loss with power decaying factor α = 4, a log-
normal fading with standard deviation of 5 dB, a noise level
of −110 dBm, and an energy detector sensing scheme with
10 observations, where the signaling scheme of the P-UE is
unknown to the C-UE [10]. In the x-axis we report the P (f)

FA

that can be achieved for different T , with T = 1, 2, . . . , k.
The corresponding P (f)

CD is shown in the y-axis. Two different
cases are considered in Fig. 3, i.e., k = 10 and k = 20. It is
worth noting that the Uniform P-UE case achieves noticeable
worse performance than Fixed P-UE, and, hence, neglecting
the border effects would lead to highly over-estimate the sys-
tem performance.
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Fig. 3. Comparisons between Uniform P-UE and Fixed P-UE
for k = 10 and k = 20.

6. CONCLUSIONS

We have analyzed a cooperative cognitive wireless network
scenario where a primary wireless network is co-located with
a cognitive (or secondary) network. In the considered sce-
nario, the nodes of the secondary network perform local bi-
nary decisions about the presence of a signal emitted by a
primary node. Such decisions are then transmitted to the FC
which adopts a proper fusion rule to derive a final decision.
In the considered setting, we make the realistic assumption
that the position of the primary user is completely unknown
to the FC. Hence, we have derived a closed-form solution
for the optimum decision rule at the FC and, accordingly, we
have provided an exact analytical characterization of missed
detection and false alarm probabilities. Then, the proposed
approach has permitted to determine the optimum local deci-
sion thresholds of the secondary nodes in a Neyman-Pearson
setup. Finally, we have shown the the uncertainty in the pri-
mary node position strongly affects the system performance,
thus assessing the importance of the proposed study.
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